72 research outputs found

    Differential postural effects of plantar-flexor muscles fatigue under normal, altered and improved vestibular and neck somatosensory conditions

    Full text link
    The aim of the present study was to assess the effects of plantar-flexor muscles fatigue on postural control during quiet standing under normal, altered and improved vestibular and neck somatosensory conditions. To address this objective, young male university students were asked to stand upright as still as possible with their eyes closed in two conditions of No Fatigue and Fatigue of the plantar-flexor muscles. In Experiment 1 (n=15), the postural task was executed in two Neutral head and Head tilted backward postures, recognized to degrade vestibular and neck somatosensory information. In Experiment 2 (n=15), the postural task was executed in two conditions of No tactile and Tactile stimulation of the neck provided by the application of strips of adhesive bandage to the skin over and around the neck. Centre of foot pressure displacements were recorded using a force platform. Results showed that (1) the Fatigue condition yielded increased CoP displacements relative to the No Fatigue condition (Experiment 1 and Experiment 2), (2) this destabilizing effect was more accentuated in the Head tilted backward posture than Neutral head posture (Experiment 1) and (3) this destabilizing effect was less accentuated in the condition of Tactile stimulation than that of No tactile stimulation of the neck (Experiment 2). In the context of the multisensory control of balance, these results suggest an increased reliance on vestibular and neck somatosensory information for controlling posture during quiet standing in condition of altered ankle neuromuscular function

    Patterns and flow in frictional fluid dynamics

    Get PDF
    Pattern-forming processes in simple fluids and suspensions have been studied extensively, and the basic displacement structures, similar to viscous fingers and fractals in capillary dominated flows, have been identified. However, the fundamental displacement morphologies in frictional fluids and granular mixtures have not been mapped out. Here we consider Coulomb friction and compressibility in the fluid dynamics, and discover surprising responses including highly intermittent flow and a transition to quasi-continuodynamics. Moreover, by varying the injection rate over several orders of magnitude, we characterize new dynamic modes ranging from stick-slip bubbles at low rate to destabilized viscous fingers at high rate. We classify the fluid dynamics into frictional and viscous regimes, and present a unified description of emerging morphologies in granular mixtures in the form of extended phase diagrams

    Ultrasound evaluation in combination with finger extension force measurements of the forearm musculus extensor digitorum communis in healthy subjects

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The aim of this study was to evaluate the usefulness of an ultrasound-based method of examining extensor muscle architecture, especially the parameters important for force development. This paper presents the combination of two non-invasive methods for studying the extensor muscle architecture using ultrasound simultaneously with finger extension force measurements.</p> <p>Methods</p> <p>M. extensor digitorum communis (EDC) was examined in 40 healthy subjects, 20 women and 20 men, aged 35–73 years. Ultrasound measurements were made in a relaxed position of the hand as well as in full contraction. Muscle cross-sectional area (CSA), pennation angle and contraction patterns were measured with ultrasound, and muscle volume and fascicle length were also estimated. Finger extension force was measured using a newly developed finger force measurement device.</p> <p>Results</p> <p>The following muscle parameters were determined: CSA, circumference, thickness, pennation angles and changes in shape of the muscle CSA. The mean EDC volume in men was 28.3 cm<sup>3 </sup>and in women 16.6 cm<sup>3</sup>. The mean CSA was 2.54 cm<sup>2 </sup>for men and 1.84 cm<sup>2 </sup>for women. The mean pennation angle for men was 6.5° and for women 5.5°. The mean muscle thickness for men was 1.2 cm and for women 0.76 cm. The mean fascicle length for men was 7.3 cm and for women 5.0 cm. Significant differences were found between men and women regarding EDC volume (p < 0.001), CSA (p < 0.001), pennation angle (p < 0.05), muscle thickness (p < 0.001), fascicle length (p < 0.001) and finger force (p < 0.001). Changes in the shape of muscle architecture during contraction were more pronounced in men than women (p < 0.01). The mean finger extension force for men was 96.7 N and for women 39.6 N. Muscle parameters related to the extension force differed between men and women. For men the muscle volume and muscle CSA were related to extension force, while for women muscle thickness was related to the extension force.</p> <p>Conclusion</p> <p>Ultrasound is a useful tool for studying muscle architectures in EDC. Muscle parameters of importance for force development were identified. Knowledge concerning the correlation between muscle dynamics and force is of importance for the development of new hand training programmes and rehabilitation after surgery.</p

    Growth Response of Drought-Stressed Pinus sylvestris Seedlings to Single- and Multi-Species Inoculation with Ectomycorrhizal Fungi

    Get PDF
    Many trees species form symbiotic associations with ectomycorrhizal (ECM) fungi, which improve nutrient and water acquisition of their host. Until now it is unclear whether the species richness of ECM fungi is beneficial for tree seedling performance, be it during moist conditions or drought. We performed a pot experiment using Pinus sylvestris seedlings inoculated with four selected ECM fungi (Cenococcum geophilum, Paxillus involutus, Rhizopogon roseolus and Suillus granulatus) to investigate (i) whether these four ECM fungi, in monoculture or in species mixtures, affect growth of P. sylvestris seedlings, and (ii) whether this effect can be attributed to species number per se or to species identity. Two different watering regimes (moist vs. dry) were applied to examine the context-dependency of the results. Additionally, we assessed the activity of eight extracellular enzymes in the root tips. Shoot growth was enhanced in the presence of S. granulatus, but not by any other ECM fungal species. The positive effect of S. granulatus on shoot growth was more pronounced under moist (threefold increase) than under dry conditions (twofold increase), indicating that the investigated ECM fungi did not provide additional support during drought stress. The activity of secreted extracellular enzymes was higher in S. granulatus than in any other species. In conclusion, our findings suggest that ECM fungal species composition may affect seedling performance in terms of aboveground biomass

    Isolated core training improves sprint performance in national-level junior swimmers

    Get PDF
    Purpose: The aim of our study was to quantify the effects of a 12-week isolated core training programme on 50-m front crawl swim time and measures of core musculature functionally relevant to swimming. Methods: Twenty national-level junior swimmers (ten male and ten female, 16 ± 1 y, 171 ± 5 cm, 63 ± 4 kg) participated in the study. Group allocation (intervention [n=10], control [n=10]) was based on two pre-existing swim training groups who were part of the same swimming club but trained in different groups. The intervention group completed the core training, incorporating exercises targeting the lumbo-pelvic complex and upper region extending to the scapula, three times per week for 12 weeks. While the training was performed in addition to the normal pool-based swimming programme, the control group maintained their usual pool-based swimming programme. We made probabilistic magnitude-based inferences about the effect of the core training on 50-m swim time and functionally relevant measures of core function. Results: Compared to the control group, the core training intervention group had a possibly large beneficial effect on 50-m swim time (-2.0%; 90% confidence interval -3.8 to -0.2%). Moreover it showed smallmoderate improvements on a timed prone-bridge test (9.8%; 3.9 to 16.0%) and asymmetric straight-arm pull-down test (21.9%; 12.5 to 32.1%), there were moderate-large increases in peak EMG activity of core musculature during isolated tests of maximal voluntary contraction. Conclusion: This is the first study to demonstrate a clear beneficial effect of isolated core training on 50-m front crawl swim performance

    Aberrant Mitochondrial Homeostasis in the Skeletal Muscle of Sedentary Older Adults

    Get PDF
    The role of mitochondrial dysfunction and oxidative stress has been extensively characterized in the aetiology of sarcopenia (aging-associated loss of muscle mass) and muscle wasting as a result of muscle disuse. What remains less clear is whether the decline in skeletal muscle mitochondrial oxidative capacity is purely a function of the aging process or if the sedentary lifestyle of older adult subjects has confounded previous reports. The objective of the present study was to investigate if a recreationally active lifestyle in older adults can conserve skeletal muscle strength and functionality, chronic systemic inflammation, mitochondrial biogenesis and oxidative capacity, and cellular antioxidant capacity. To that end, muscle biopsies were taken from the vastus lateralis of young and age-matched recreationally active older and sedentary older men and women (N = 10/group; ♀  =  ♂). We show that a physically active lifestyle is associated with the partial compensatory preservation of mitochondrial biogenesis, and cellular oxidative and antioxidant capacity in skeletal muscle of older adults. Conversely a sedentary lifestyle, associated with osteoarthritis-mediated physical inactivity, is associated with reduced mitochondrial function, dysregulation of cellular redox status and chronic systemic inflammation that renders the skeletal muscle intracellular environment prone to reactive oxygen species-mediated toxicity. We propose that an active lifestyle is an important determinant of quality of life and molecular progression of aging in skeletal muscle of the elderly, and is a viable therapy for attenuating and/or reversing skeletal muscle strength declines and mitochondrial abnormalities associated with aging

    Anaerobic performance in masters athletes

    Full text link

    Diagnosis and treatment of viral diseases in recipients of allogeneic hematopoietic stem cell transplantation

    Full text link
    • …
    corecore