22 research outputs found

    Optimizing adipogenic transdifferentiation of bovine mesenchymal stem cells: a prominent role of ascorbic acid in FABP4 induction

    Get PDF
    Adipocyte differentiation of bovine adipose-derived stem cells (ASC) was induced by foetal bovine serum (FBS), biotin, pantothenic acid, insulin, rosiglitazone, dexamethasone and 3-isobutyl-1-methylxanthine, followed by incubation in different media to test the influence of ascorbic acid (AsA), bovine serum lipids (BSL), FBS, glucose and acetic acid on transdifferentiation into functional adipocytes. Moreover, different culture plate coatings (collagen-A, gelatin-A or poly-L-lysine) were tested. The differentiated ASC were subjected to Nile red staining, DAPI staining, immunocytochemistry and quantitative reverse transcription PCR (for NT5E, THY1, ENG, PDGFRα, FABP4, PPARγ, LPL, FAS, GLUT4). Nile red quantification showed a significant increase in the development of lipid droplets in treatments with AsA and BSL without FBS. The presence of BSL induced a prominent increase in FABP4 mRNA abundance and in FABP4 immunofluorescence signals in coincubation with AsA. The abundance of NT5E, ENG and THY1 mRNA decreased or tended to decrease in the absence of FBS, and ENG was additionally suppressed by AsA. DAPI fluorescence was higher in cells cultured in poly-L-lysine or gelatin-A coated wells. In additional experiments, the multi-lineage differentiation potential to osteoblasts was verified in medium containing ß-glycerophosphate, dexamethasone and 1,25-dihydroxyvitamin D3 using alizarin red staining. In conclusion, bovine ASC are capable of multi-lineage differentiation. Poly-L-lysine or gelatin-A coating, the absence of FBS, and the presence of BSL and AsA favour optimal transdifferentiation into adipocytes. AsA supports transdifferentiation via a unique role in FABP4 induction, but this is not linearly related to the primarily BSL-driven lipid accumulation

    Low Magnesium Concentration Enforces Bone Calcium Deposition Irrespective of 1,25-Dihydroxyvitamin D3 Concentration

    Get PDF
    Efficient coordination between Mg2+ and vitamin D maintains adequate Ca2+ levels during lactation. This study explored the possible interaction between Mg2+ (0.3, 0.8, and 3 mM) and 1,25-dihydroxyvitamin D3 (1,25D; 0.05 and 5 nM) during osteogenesis using bovine mesenchymal stem cells. After 21 days, differentiated osteocytes were subjected to OsteoImage analysis, alkaline phosphatase (ALP) activity measurements, and immunocytochemistry of NT5E, ENG (endoglin), SP7 (osterix), SPP1 (osteopontin), and the BGLAP gene product osteocalcin. The mRNA expression of NT5E, THY1, ENG, SP7, BGLAP, CYP24A1, VDR, SLC41A1, SLC41A2, SLC41A3, TRPM6, TRPM7, and NIPA1 was also assessed. Reducing the Mg2+ concentration in the medium increased the accumulation of mineral hydroxyapatite and ALP activity. There was no change in the immunocytochemical localization of stem cell markers. Expression of CYP24A1 was higher in all groups receiving 5 nM 1,25D. There were tendencies for higher mRNA abundance of THY1, BGLAP, and NIPA1 in cells receiving 0.3 mM Mg2+ and 5 nM 1,25D. In conclusion, low levels of Mg2+ greatly enhanced the deposition of bone hydroxyapatite matrix. The effect of Mg2+ was not modulated by 1,25D, although the expression of certain genes (including BGLAP) tended to be increased by the combination of low Mg2+ and high 1,25D concentrations

    Comparison of Sources and Methods for the Isolation of Equine Adipose Tissue-Derived Stromal/Stem Cells and Preliminary Results on Their Reaction to Incubation with 5-Azacytidine

    Get PDF
    Physiological particularities of the equine heart justify the development of an in vitro model suitable for investigations of the species-specific equine cardiac electrophysiology. Adipose tissue-derived stromal/stem cells (ASCs) could be a promising starting point from which to develop such a cardiomyocyte (CM)-like cell model. Therefore, we compared abdominal, retrobulbar, and subcutaneous adipose tissue as sources for the isolation of ASCs applying two isolation methods: the collagenase digestion and direct explant culture. Abdominal adipose tissue was most suitable for the isolation of ASCs and both isolation methods resulted in comparable yields of CD45-/CD34-negative cells expressing the mesenchymal stem cell markers CD29, CD44, and CD90, as well as pluripotency markers, as determined by flow cytometry and real-time quantitative PCR. However, exposure of equine ASCs to 5-azacytidine (5-AZA), reportedly inducing CM differentiation from rats, rabbits, and human ASCs, was not successful in our study. More precisely, neither the early differentiation markers GATA4 and NKX2-5, nor the late CM differentiation markers TNNI3, MYH6, and MYH7 were upregulated in equine ASCs exposed to 10 µM 5-AZA for 48 h. Hence, further work focusing on the optimal conditions for CM differentiation of equine stem cells derived from adipose tissue, as well as possibly from other origins, are needed

    Multilineage Differentiation Potential of Equine Adipose-Derived Stromal/Stem Cells from Different Sources

    Get PDF
    The investigation of multipotent stem/stromal cells (MSCs) in vitro represents an important basis for translational studies in large animal models. The study’s aim was to examine and compare clinically relevant in vitro properties of equine MSCs, which were isolated from abdominal (abd), retrobulbar (rb) and subcutaneous (sc) adipose tissue by collagenase digestion (ASCs-SVF) and an explant technique (ASCs-EXP). Firstly, we examined proliferation and trilineage differentiation and, secondly, the cardiomyogenic differentiation potential using activin A, bone morphogenetic protein-4 and Dickkopf-1. Fibroblast-like, plastic-adherent ASCs-SVF and ASCs-EXP were obtained from all sources. The proliferation and chondrogenic differentiation potential did not differ significantly between the isolation methods and localizations. However, abd-ASCs-EXP showed the highest adipogenic differentiation potential compared to rb- and sc-ASCs-EXP on day 7 and abd-ASCs-SVF a higher adipogenic potential compared to abd-ASCs-EXP on day 14. Osteogenic differentiation potential was comparable at day 14, but by day 21, abd-ASCs-EXP demonstrated a higher osteogenic potential compared to abd-ASCs-SVF and rb-ASCs-EXP. Cardiomyogenic differentiation could not be achieved. This study provides insight into the proliferation and multilineage differentiation potential of equine ASCs and is expected to provide a basis for future preclinical and clinical studies in horses

    The effect of pH on glucoamylase production, glycosylation and chemostat evolution of Aspergillus niger

    Get PDF
    The effect of ambient pH on production and glycosylation of glucoamylase (GAM) and on the generation of a morphological mutant produced by Aspergillus niger strain B1 (a transformant containing an additional 20 copies of the homologous GAM glaA gene) was studied. We have shown that a change in the pH from 4 to 5.4 during continuous cultivation of the A. niger B1 strain instigates or accelerates the spontaneous generation of a morphological mutant (LB). This mutant strain produced approx. 50% less extracellular protein and GAM during both chemostat and batch cultivation compared to another strain with parental-type morphology (PS). The intracellular levels of GAM were also lower in the LB strain. In addition, cultivation of the original parent B1 strain in a batch-pulse bioreactor at pH 5.5 resulted in a 9-fold drop in GAM production and a 5-fold drop in extracellular protein compared to that obtained at pH 4. Glycosylation analysis of the glucoamylases purified from shake-flask cultivation showed that both principal forms of GAM secreted by the LB strain possessed enhanced galactosylation (2-fold), compared to those of the PS. Four diagnostic methods (immunostaining, mild methanolysis, mild acid hydrolysis and β-galactofuranosidase digestion) provided evidence that the majority of this galactose was of the furanoic conformation. The GAMs produced during batch-pulse cultivation at pH 5.5 similarly showed an approx. 2-fold increase in galactofuranosylation compared to pH 4. Interestingly, in both cases the increased galactofuranosylation appears primarily restricted to the O-linked glycan component. Ambient pH therefore regulates both GAM production and influences its glycosylation

    Synopse virologischer Analysen im Nationalen Referenzzentrum für Influenzaviren während der COVID-19-Pandemie

    Get PDF
    Das Nationale Referenzzentrum für Influenzaviren gewinnt durch die fortlaufende Untersuchung von Proben aus den Sentinelpraxen der Arbeitsgemeinschaft Influenza einen umfassenden Überblick über die zirkulierenden respiratorischen Erreger in Deutschland. Dazu gehören neben SARS-CoV-2 und den Influenzaviren auch das Respiratorische Synzytialvirus, Parainfluenzaviren, humane Metapneumoviren, humane saisonale Coronaviren und humane Rhinoviren. Die Analyseergebnisse von 15.660 Sentinelproben sowie weiteren Isolaten im Zeitraum von Kalenderwoche 5/2020 bis 21/2022 werden im Epidemiologischen Bulletin 22/2022 vorgestellt. Beschrieben werden außerdem die Zirkulation respiratorischer Erreger im Vergleich zu vorpandemischen Saisons, die molekulare Charakterisierung und phylogenetische Analysen, die Überprüfung der Passgenauigkeit der eingesetzten Influenzaimpfstoffe und die Resistenzprüfung von Influenzaviren

    The Combined Influence of Magnesium and Insulin on Central Metabolic Functions and Expression of Genes Involved in Magnesium Homeostasis of Cultured Bovine Adipocytes

    Get PDF
    At the onset of lactation, dairy cows suffer from insulin resistance, insulin deficiency or both, similar to human diabetes, resulting in lipolysis, ketosis and fatty liver. This work explored the combined effects of different levels of magnesium (0.1, 0.3, 1 and 3 mM) and insulin (25, 250 and 25,000 pM) on metabolic pathways and the expression of magnesium-responsive genes in a bovine adipocyte model. Magnesium starvation (0.1 mM) and low insulin (25 pM) independently decreased or tended to decrease the accumulation of non-polar lipids and uptake of the glucose analog 6-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-6-deoxyglucose (6-NBDG). Activity of glycerol 3-phosphate dehydrogenase (GPDH) was highest at 25 pM insulin and 3 mM magnesium. Expression of SLC41A1 and SLC41A3 was reduced at 0.1 mM magnesium either across insulin concentrations (SLC41A1) or at 250 pM insulin (SLC41A3). MAGT1 expression was reduced at 3 mM magnesium. NIPA1 expression was reduced at 3 mM and 0.1 mM magnesium at 25 and 250 pM insulin, respectively. Expression of SLC41A2, CNNM2, TRPM6 and TRPM7 was not affected. We conclude that magnesium promotes lipogenesis in adipocytes and inversely regulates the transcription of genes that increase vs. decrease cytosolic magnesium concentration. The induction of GAPDH activity by surplus magnesium at low insulin concentration can counteract excessive lipomobilization

    Lumicons: mapping light patterns to information classes

    No full text
    Comunicació presentada a la Mensch und Computer 2015, conferència celebrada del 6 al 9 de setembre de 2015 a Stuttgart, Alemanya.The current development of ambient light systems lacks an evaluation and guidelines in the design process. We present a study design with two complementary parts, which aims to fill the gaps in the understanding of information encoding via light. In the first part of our study we want to find out light patterns that represent different types of everyday information, and in the second part we want to verify the appropriate mappings of these light patterns suggested by participants. An appropriate mapping of the light pattern should be perceptible and distinct with a degree of attention arousal and aesthetic appearance. The goal of the study is to derive light patterns and guidelines for building new light systems and applications.This research has been performed with support from the BMBF project LUMICONS 16SV7162K
    corecore