337 research outputs found

    DNA Extraction Method Development for Ocular Tissues

    Get PDF
    Purpose: DNA extraction kits are traditionally developed to work with liquid tissues such as blood, saliva, and swabs, but some have been proposed to work with solid tissues. Somatic variation in cancers can be important for tumor subtyping and treatment guidance, including ocular tumors. Additionally, epigenetic marks such as 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) are tissue-specific and change in disease states, particularly evident in diabetic retinopathy and age-related macular degeneration. Commercial DNA extraction kits are available from several vendors, but the various kits have different strengths and weaknesses, and the removal of PCR inhibitors will vary with each kit. This project investigates the yield and purity of DNA from ocular tissues using commercial DNA extraction kits. Methods: Cornea, neural retina, RPE/choroid layer, optic nerve, and capsular bag were collected and aliquoted into 15 mg aliquots. Extractions were performed using the following kits: DNEasy Blood and Tissue Kit (Qiagen;), GeneJET Genomic DNA Purification Kit (ThermoFisher Scientific), Monarch HMW DNA Extraction Kit for Tissue (New England Biosciences), and genomicPrep Mini Spin Kit (Cytiva). DNA was quantified using the Qubit Fluorometer and molecular weight was checked by agarose gel. Several more kits are currently being tested. Results: All four kits yielded high molecular weight DNA (above 20 kbp). The Monarch HMW kit yielded DNA with significantly higher molecular weights. The DNA yields per milligram of tissue were highest using the DNEasy Blood and Tissue Kit for optic nerve, neural retina, and RPE/choroid. The yield was highest for the cornea using the genomicPrep Mini Spin Kit. Only the genomicPrep Mini Spin Kit yielded sufficient DNA for quantification from the capsular bag, and total yields were minimal (600 ng or less). Additional kits are currently being tested, but initial results indicate that several commercial kits will be sufficient for DNA extraction of ocular tissues. Further work is needed to purify epithelial cells and stem cells from the intraocular lens. Conclusions: Of the kits tested, all are sufficient to obtain significant amounts of DNA from all ocular tissues aside from the capsular bag. The Monarch HMW yielded the highest molecular weight, but significantly lower quantities of DNA than the other kits, indicating that it may not be ideal for most purposes. Protocol development for the capsular bag is still underway

    A new approach to bias correction in RNA-Seq

    Get PDF
    Motivation: Quantification of sequence abundance in RNA-Seq experiments is often conflated by protocol-specific sequence bias. The exact sources of the bias are unknown, but may be influenced by polymerase chain reaction amplification, or differing primer affinities and mixtures, for example. The result is decreased accuracy in many applications, such as de novo gene annotation and transcript quantification

    High-throughput sequence alignment using Graphics Processing Units

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The recent availability of new, less expensive high-throughput DNA sequencing technologies has yielded a dramatic increase in the volume of sequence data that must be analyzed. These data are being generated for several purposes, including genotyping, genome resequencing, metagenomics, and <it>de novo </it>genome assembly projects. Sequence alignment programs such as MUMmer have proven essential for analysis of these data, but researchers will need ever faster, high-throughput alignment tools running on inexpensive hardware to keep up with new sequence technologies.</p> <p>Results</p> <p>This paper describes MUMmerGPU, an open-source high-throughput parallel pairwise local sequence alignment program that runs on commodity Graphics Processing Units (GPUs) in common workstations. MUMmerGPU uses the new Compute Unified Device Architecture (CUDA) from nVidia to align multiple query sequences against a single reference sequence stored as a suffix tree. By processing the queries in parallel on the highly parallel graphics card, MUMmerGPU achieves more than a 10-fold speedup over a serial CPU version of the sequence alignment kernel, and outperforms the exact alignment component of MUMmer on a high end CPU by 3.5-fold in total application time when aligning reads from recent sequencing projects using Solexa/Illumina, 454, and Sanger sequencing technologies.</p> <p>Conclusion</p> <p>MUMmerGPU is a low cost, ultra-fast sequence alignment program designed to handle the increasing volume of data produced by new, high-throughput sequencing technologies. MUMmerGPU demonstrates that even memory-intensive applications can run significantly faster on the relatively low-cost GPU than on the CPU.</p

    Over-Expression of DSCAM and COL6A2 Cooperatively Generates Congenital Heart Defects

    Get PDF
    A significant current challenge in human genetics is the identification of interacting genetic loci mediating complex polygenic disorders. One of the best characterized polygenic diseases is Down syndrome (DS), which results from an extra copy of part or all of chromosome 21. A short interval near the distal tip of chromosome 21 contributes to congenital heart defects (CHD), and a variety of indirect genetic evidence suggests that multiple candidate genes in this region may contribute to this phenotype. We devised a tiered genetic approach to identify interacting CHD candidate genes. We first used the well vetted Drosophila heart as an assay to identify interacting CHD candidate genes by expressing them alone and in all possible pairwise combinations and testing for effects on rhythmicity or heart failure following stress. This comprehensive analysis identified DSCAM and COL6A2 as the most strongly interacting pair of genes. We then over-expressed these two genes alone or in combination in the mouse heart. While over-expression of either gene alone did not affect viability and had little or no effect on heart physiology or morphology, co-expression of the two genes resulted in ≈50% mortality and severe physiological and morphological defects, including atrial septal defects and cardiac hypertrophy. Cooperative interactions between DSCAM and COL6A2 were also observed in the H9C2 cardiac cell line and transcriptional analysis of this interaction points to genes involved in adhesion and cardiac hypertrophy. Our success in defining a cooperative interaction between DSCAM and COL6A2 suggests that the multi-tiered genetic approach we have taken involving human mapping data, comprehensive combinatorial screening in Drosophila, and validation in vivo in mice and in mammalian cells lines should be applicable to identifying specific loci mediating a broad variety of other polygenic disorders

    Ernst Freund as Precursor of the Rational Study of Corporate Law

    Get PDF
    Gindis, David, Ernst Freund as Precursor of the Rational Study of Corporate Law (October 27, 2017). Journal of Institutional Economics, Forthcoming. Available at SSRN: https://ssrn.com/abstract=2905547, doi: https://dx.doi.org/10.2139/ssrn.2905547The rise of large business corporations in the late 19th century compelled many American observers to admit that the nature of the corporation had yet to be understood. Published in this context, Ernst Freund's little-known The Legal Nature of Corporations (1897) was an original attempt to come to terms with a new legal and economic reality. But it can also be described, to paraphrase Oliver Wendell Holmes, as the earliest example of the rational study of corporate law. The paper shows that Freund had the intuitions of an institutional economist, and engaged in what today would be called comparative institutional analysis. Remarkably, his argument that the corporate form secures property against insider defection and against outsiders anticipated recent work on entity shielding and capital lock-in, and can be read as an early contribution to what today would be called the theory of the firm.Peer reviewe

    Genome sequence and rapid evolution of the rice pathogen Xanthomonas oryzae pv. oryzae PXO99A

    Get PDF
    Background: Xanthomonas oryzae pv. oryzae causes bacterial blight of rice (Oryza sativa L.), a major disease that constrains production of this staple crop in many parts of the world. We report here on the complete genome sequence of strain PXO99A and its comparison to two previously sequenced strains, KACC10331 and MAFF311018, which are highly similar to one another. Results: The PXO99 A genome is a single circular chromosome of 5,240,075 bp, considerably longer than the genomes of the other strains (4,941,439 bp and 4,940,217 bp, respectively), and it contains 5083 protein-coding genes, including 87 not found in KACC10331 or MAFF311018. PXO99A contains a greater number of virulence-associated transcription activator-like effector genes and has at least ten major chromosomal rearrangements relative to KACC10331 and MAFF311018. PXO99 A contains numerous copies of diverse insertion sequence elements, members of which are associated with 7 out of 10 of the major rearrangements. A rapidly-evolving CRISPR (clustered regularly interspersed short palindromic repeats) region contains evidence of dozens of phage infections unique to the PXO99A lineage. PXO99A also contains a unique, near-perfect tandem repeat of 212 kilobases close to the replication terminus. Conclusion: Our results provide striking evidence of genome plasticity and rapid evolution within Xanthomonas oryzae pv. oryzae. The comparisons point to sources of genomic variation and candidates for strain-specific adaptations of this pathogen that help to explain the extraordinary diversity of Xanthomonas oryzae pv. oryzae genotypes and races that have been isolated from around the world. © 2008 Salzberg et al; licensee BioMed Central Ltd

    Transcriptome Analysis Reveals Strain-Specific and Conserved Stemness Genes in Schmidtea mediterranea

    Get PDF
    The planarian Schmidtea mediterranea is a powerful model organism for studying stem cell biology due to its extraordinary regenerative ability mediated by neoblasts, a population of adult somatic stem cells. Elucidation of the S. mediterranea transcriptome and the dynamics of transcript expression will increase our understanding of the gene regulatory programs that regulate stem cell function and differentiation. Here, we have used RNA-Seq to characterize the S. mediterranea transcriptome in sexual and asexual animals and in purified neoblast and differentiated cell populations. Our analysis identified many uncharacterized genes, transcripts, and alternatively spliced isoforms that are differentially expressed in a strain or cell type-specific manner. Transcriptome profiling of purified neoblasts and differentiated cells identified neoblast-enriched transcripts, many of which likely play important roles in regeneration and stem cell function. Strikingly, many of the neoblast-enriched genes are orthologs of genes whose expression is enriched in human embryonic stem cells, suggesting that a core set of genes that regulate stem cell function are conserved across metazoan species
    corecore