36 research outputs found

    Whole-genome re-sequencing of two Italian tomato landraces reveals sequence variations in genes associated with stress tolerance, fruit quality and long shelf-life traits

    Get PDF
    Tomato is a high value crop and the primary model for fleshy fruit development and ripening. Breeding priorities include increased fruit quality, shelf life and tolerance to stresses. To contribute towards this goal, we re-sequenced the genomes of Corbarino (COR) and Lucariello (LUC) landraces, which both possess the traits of plant adaptation to water deficit, prolonged fruit shelf-life and good fruit quality. Through the newly developed pipeline Reconstructor, we generated the genome sequences of COR and LUC using datasets of 65.8M and 56.4M of 30–150bp paired-end reads, respectively. New contigs including reads that could not be mapped to the tomato reference genome were assembled, and a total of 43, 054 and 44, 579 gene loci were annotated in COR and LUC. Both genomes showed novel regions with similarity to Solanum pimpinellifolium and Solanum pennellii. In addition to small deletions and insertions, 2, 000 and 1, 700 single nucleotide polymorphisms (SNPs) could exert potentially disruptive effects on 1, 371 and 1, 201 genes in COR and LUC, respectively. A detailed survey of the SNPs occurring in fruit quality, shelf life and stress tolerance related-genes identified several candidates of potential relevance. Variations in ethylene response components may concur in determining peculiar phenotypes of COR and LUC

    Sequencing and Analysis of Plastid Genome in Mycoheterotrophic Orchid Neottia nidus-avis

    Get PDF
    Plastids are the semiautonomous organelles that possess their own genome inherited from the cyanobacterial ancestor. The primary function of plastids is photosynthesis so the structure and evolution of plastid genomes are extensively studied in photosynthetic plants. In contrast, little is known about the plastomes of nonphotosynthetic species. In higher plants, plastid genome sequences are available for only three strictly nonphotosynthetic species, the liverwort Aneura mirabilis and two flowering plants, Epifagus virginiana and Rhizanthella gardneri. We report here the complete sequence of a plastid genome of nonphotosynthetic mycoheterotrophic orchid Neottia nidus-avis, determined using 454 pyrosequencing technology. It was found to be reduced in both genome size and gene content; this reduction is however not as drastic as in the other nonphotosynthetic orchid, R. gardneri. Neottia plastome lacks all genes encoding photosynthetic proteins, RNA polymerase subunits but retains most genes of translational apparatus. Those genes that are retained have an increased rate of both synonymous and nonsynonymous substitutions but do not exhibit relaxation of purifying selection either in Neottia or in Rhizanthella

    Resequencing

    Full text link
    [ES] La revolución que supone la secuenciación de próxima generación está permitiendo la resecuenciación del genoma completo (WGRS) de cientos o incluso miles de ejemplares de cultivos básicos y especies modelo. Con el lanzamiento de su genoma de referencia, progresivamente se están emprendiendo proyectos WGRS también para otras especies de plantas en una amplia variedad de estudios. En berenjena común (Solanum melongena L.), aunque se ha publicado un primer borrador de la secuencia del genoma de referencia, hasta el momento no se han realizado estudios de resecuenciación. En este capítulo presentamos los primeros resultados de la resecuenciación de ocho accesiones, siete de berenjena común y una del pariente silvestre S. incanum L., que corresponden a los progenitores de un cruce multiparental de generación avanzada (MAGIC) población que se encuentra actualmente en desarrollo utilizando la secuencia del genoma de la berenjena recién desarrollada que se presenta en el Cap. 7 de este libro. Se identificaron más de diez millones de polimorfismos entre las accesiones, el 90% de ellos en el S. incanum silvestre relacionado, lo que confirma la erosión genética de la berenjena común cultivada. Entre los progenitores de la población MAGIC, el patrón de distribución de polimorfismos comunes a lo largo de los cromosomas ha revelado posibles huellas de introgresión ancestral de cruces interespecíficos. El conjunto de polimorfismos se ha anotado extensamente y actualmente se está utilizando para análisis adicionales con el fin de genotipar eficientemente la población MAGIC en curso y diseccionar rasgos agronómicos y morfológicos importantes. La información proporcionada en este primer estudio de resecuenciación en berenjena será extremadamente útil para ayudar al fitomejoramiento a desarrollar nuevas variedades mejoradas y resistentes para enfrentar futuras amenazas y desafíos.[EN] The next-generation sequencing revolution is allowing the whole-genome resequencing (WGRS) of hundreds or even thousands of accessions for staple crops and model species. With the release of their reference genome, progressively also other plants, species are undertaking WGRS projects for a broad variety of studies. In common eggplant (Solanum melongena L.), although a first draft of the reference genome sequence has been published, no resequencing studies have been performed so far. In this chapter, we present the first results of the resequencing of eight accessions, seven of common eggplant and one of the wild relative S. incanum L., that correspond to the parents of a multi-parent advanced generation inter-cross (MAGIC) population that is currently under develop- ment using the newly developed eggplant genome sequence presented in Chap. 7 of this book. Over ten million polymorphisms were identified among the accessions, 90% of them in the wild related S. incanum, confirming the genetic erosion of the cultivated common eggplant. Among the MAGIC population parents, the common polymorphism distribu- tion pattern along the chromosomes has revealed possible footprints of ancestral intro- gression from interspecific crosses. The set of polymorphisms has been extensively anno- tated and currently is being used for further analyses in order to efficiently genotype the ongoing MAGIC population and to dissect important agronomic and morphological traits. The information provided in this first resequencing study in eggplant will be extremely helpful to assist plant breeding to develop new improved and resilient varieties to face future threats and challenges.This work has received funding from the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No 677379 (G2P-SOL project: Linking genetic resources, genomes and phenotypes of Solanaceous crops) and from Spanish Ministerio de Economía, Industria y Competitividad and Fondo Europeo de Desarrollo Regional (grant AGL2015-64755-R from MINECO/FEDER).Prohens Tomás, J.; Vilanova Navarro, S.; Gramazio, P. (2019). Resequencing. En The Eggplant Genome. Springer. 81-89. http://hdl.handle.net/10251/181875S818

    Insights Into the Adaptation to Greenhouse Cultivation of the Traditional Mediterranean Long Shelf-Life Tomato Carrying the alc Mutation: A Multi-Trait Comparison of Landraces, Selections, and Hybrids in Open Field and Greenhouse

    Get PDF
    [EN] Long shelf-life tomato (Solanum lycopersicum) landraces, characterized by carrying the alc allele in the NOR. NAC locus, have been traditionally cultivated in the Mediterranean region. These materials are adapted to open field conditions under low input conditions. However, cultivation under greenhouse is expanding fueled by increasing demand of these traditional tomatoes. We hypothesize that the large diversity in the long shelf-life landraces and derived materials can be exploited for adaptation to these new cultivation conditions. We have evaluated 12 varieties (seven landraces, three selections and two hybrids) carrying the alc mutation under open field (OF) and greenhouse (GH) cultivation, and evaluated them for 52 morphological, agronomic, chemical properties, and chemical composition descriptors. All descriptors, except six morphological ones, were variable. The variety effect was the greatest contributor to variation for most morphological traits, as well as for fruit weight, fruit shape, dry matter, and soluble solids content. However, significant environmental and genotype x environment interaction were found for 36 and 42 descriptors, respectively. Fruits from GH plants had lower weight and firmness and were less red than those from OF. On average, in GH yield was 35% lower and daily fruit weight loss in post-harvest 41% higher than in OF. However, fruits from GH had on average higher dry matter and soluble solids contents, antioxidant activity, glucose, fructose, and ascorbic acid concentrations, but lower contents in lycopene and beta-carotene than those from OF. A principal components analysis clearly separated varieties according to the cultivation environment. However, the distribution pattern of varieties within each of the two clusters (GH and OF) was similar, despite the strong G x E interaction for many descriptors. Landraces from the same origin plotted in the same area of each cluster, and selections and hybrids plotted together with the landraces. The results reveal a high impact of the cultivation environment on morphological, agronomic, chemical properties, and chemical composition of Mediterranean long shelf-life traditional tomato varieties. This suggests that breeding programs specifically focused to adaptation to greenhouse conditions should be developed.This work was supported by Associacio de Productors i Comercialitzadors de la Tomata de Penjar d'Alcala de Xivert. Funding was also received from the TRADITOM (Traditional tomato varieties and cultural practices: a case for agricultural diversification with impact on food security and health of European population), G2P-SOL (Linking genetic resources, genomes, and phenotypes of Solanaceous crops) and BRESOV (Breeding for resilient, efficient, and sustainable organic vegetable production) projects. TRADITOM, G2P-SOL, and BRESOV projects have received funding from the European Union's Horizon 2020 research and innovation programme under grant agreements 634561 (TRADITOM), 677379 (G2PSOL), and 774244 (BRESOV). ER is grateful to the Spanish Ministerio de Economia, Industria y Competitividad for a pre-doctoral grant (BES-2016-077482). MP is grateful to Spanish Ministerio de Economia, Industria y Competitividad for a post-doctoral grant within the Juan de la Cierva programme (FCJI-2015-24835) and to Generalitat Valenciana and Fondo Social Europeo for a post-doctoral contract (APOSTD/2018/014).Figás-Moreno, MDR.; Prohens Tomás, J.; Raigón Jiménez, MD.; Pereira-Días, L.; Casanova-Calancha, C.; García-Martínez, MD.; Rosa-Martínez, E.... (2018). Insights Into the Adaptation to Greenhouse Cultivation of the Traditional Mediterranean Long Shelf-Life Tomato Carrying the alc Mutation: A Multi-Trait Comparison of Landraces, Selections, and Hybrids in Open Field and Greenhouse. Frontiers in Plant Science. 9. https://doi.org/10.3389/fpls.2018.01774S9Adalid, A. M., Roselló, S., Valcárcel, M., & Nuez, F. (2011). Analysis of the genetic control of β-carotene and l-ascorbic acid accumulation in an orange-brownish wild cherry tomato accession. Euphytica, 184(2), 251-263. doi:10.1007/s10681-011-0584-xAdams, S. (2001). Effect of Temperature on the Growth and Development of Tomato Fruits. Annals of Botany, 88(5), 869-877. doi:10.1006/anbo.2001.1524Ballester, A.-R., Molthoff, J., de Vos, R., Hekkert, B. te L., Orzaez, D., Fernández-Moreno, J.-P., … Bovy, A. (2009). Biochemical and Molecular Analysis of Pink Tomatoes: Deregulated Expression of the Gene Encoding Transcription Factor SlMYB12 Leads to Pink Tomato Fruit Color. Plant Physiology, 152(1), 71-84. doi:10.1104/pp.109.147322Barrett, D. M., Beaulieu, J. C., & Shewfelt, R. (2010). Color, Flavor, Texture, and Nutritional Quality of Fresh-Cut Fruits and Vegetables: Desirable Levels, Instrumental and Sensory Measurement, and the Effects of Processing. Critical Reviews in Food Science and Nutrition, 50(5), 369-389. doi:10.1080/10408391003626322Beckles, D. M. (2012). Factors affecting the postharvest soluble solids and sugar content of tomato (Solanum lycopersicum L.) fruit. Postharvest Biology and Technology, 63(1), 129-140. doi:10.1016/j.postharvbio.2011.05.016Bota, J., Conesa, M. À., Ochogavia, J. M., Medrano, H., Francis, D. M., & Cifre, J. (2014). Characterization of a landrace collection for Tomàtiga de Ramellet (Solanum lycopersicum L.) from the Balearic Islands. Genetic Resources and Crop Evolution, 61(6), 1131-1146. doi:10.1007/s10722-014-0096-3Cano, A., Acosta, M., & Arnao, M. B. (2003). Hydrophilic and lipophilic antioxidant activity changes during on-vine ripening of tomatoes (Lycopersicon esculentum Mill.). Postharvest Biology and Technology, 28(1), 59-65. doi:10.1016/s0925-5214(02)00141-2Missio, J. C., Renau, R. M., Artigas, F. C., & Cornejo, J. C. (2015). Sugar-and-acid profile of Penjar tomatoes and its evolution during storage. Scientia Agricola, 72(4), 314-321. doi:10.1590/0103-9016-2014-0311Casals, J., Cebolla-Cornejo, J., Roselló, S., Beltrán, J., Casañas, F., & Nuez, F. (2011). Long-term postharvest aroma evolution of tomatoes with the alcobaça (alc) mutation. European Food Research and Technology, 233(2), 331-342. doi:10.1007/s00217-011-1517-6Casals, J., Pascual, L., Cañizares, J., Cebolla-Cornejo, J., Casañas, F., & Nuez, F. (2011). Genetic basis of long shelf life and variability into Penjar tomato. Genetic Resources and Crop Evolution, 59(2), 219-229. doi:10.1007/s10722-011-9677-6Cebolla-Cornejo, J., Roselló, S., & Nuez, F. (2013). Phenotypic and genetic diversity of Spanish tomato landraces. Scientia Horticulturae, 162, 150-164. doi:10.1016/j.scienta.2013.07.044Conesa, M. À., Galmés, J., Ochogavía, J. M., March, J., Jaume, J., Martorell, A., … Cifre, J. (2014). The postharvest tomato fruit quality of long shelf-life Mediterranean landraces is substantially influenced by irrigation regimes. Postharvest Biology and Technology, 93, 114-121. doi:10.1016/j.postharvbio.2014.02.014Cortés-Olmos, C., Valcárcel, J. V., Roselló, J., Díez, M. J., & Cebolla-Cornejo, J. (2015). Traditional Eastern Spanish varieties of tomato. Scientia Agricola, 72(5), 420-431. doi:10.1590/0103-9016-2014-0322Csizinszky, A. A. (s. f.). Production in the open field. Tomatoes, 237-256. doi:10.1079/9780851993966.0237Diamanti, J., Battino, M., & Mezzetti, B. (2011). Breeding for Fruit Nutritional and Nutraceutical Quality. Breeding for Fruit Quality, 61-79. doi:10.1002/9780470959350.ch3Dumas, Y., Leoni, C., Portas, C. A. M., & Bièche, B. (1994). INFLUENCE OF WATER AND NITROGEN AVAILABILITY ON YIELD AND QUALITY OF PROCESSING TOMATO IN THE EUROPEAN UNION COUNTRIES. Acta Horticulturae, (376), 185-192. doi:10.17660/actahortic.1994.376.23El-Gabry, M. A. H., Solieman, T. I. H., & Abido, A. I. A. (2014). Combining ability and heritability of some tomato (Solanum lycopersicum L.) cultivars. Scientia Horticulturae, 167, 153-157. doi:10.1016/j.scienta.2014.01.010FAIRCHILD, D. (1927). THE TOMATO TERRACES OF BAÑALBUFAR. Journal of Heredity, 18(6), 245-251. doi:10.1093/oxfordjournals.jhered.a102861Favati, F., Lovelli, S., Galgano, F., Miccolis, V., Di Tommaso, T., & Candido, V. (2009). Processing tomato quality as affected by irrigation scheduling. Scientia Horticulturae, 122(4), 562-571. doi:10.1016/j.scienta.2009.06.026Figàs, M. R., Prohens, J., Casanova, C., Fernández-de-Córdova, P., & Soler, S. (2018). Variation of morphological descriptors for the evaluation of tomato germplasm and their stability across different growing conditions. Scientia Horticulturae, 238, 107-115. doi:10.1016/j.scienta.2018.04.039Figàs, M. R., Prohens, J., Raigón, M. D., Fernández-de-Córdova, P., Fita, A., & Soler, S. (2014). Characterization of a collection of local varieties of tomato (Solanum lycopersicum L.) using conventional descriptors and the high-throughput phenomics tool Tomato Analyzer. Genetic Resources and Crop Evolution, 62(2), 189-204. doi:10.1007/s10722-014-0142-1Figàs, M. R., Prohens, J., Raigón, M. D., Fita, A., García-Martínez, M. D., Casanova, C., … Soler, S. (2015). Characterization of composition traits related to organoleptic and functional quality for the differentiation, selection and enhancement of local varieties of tomato from different cultivar groups. Food Chemistry, 187, 517-524. doi:10.1016/j.foodchem.2015.04.083Fullana-Pericàs, M., Ponce, J., Conesa, M. À., Juan, A., Ribas-Carbó, M., & Galmés, J. (2018). Changes in yield, growth and photosynthesis in a drought-adapted Mediterranean tomato landrace (Solanum lycopersicum ‘Ramellet’) when grafted onto commercial rootstocks and Solanum pimpinellifolium. Scientia Horticulturae, 233, 70-77. doi:10.1016/j.scienta.2018.01.045Galiana-Balaguer, L., Roselló, S., & Nuez, F. (2006). Characterization and Selection of Balanced Sources of Variability for Breeding Tomato (Lycopersicon) Internal Quality. Genetic Resources and Crop Evolution, 53(5), 907-923. doi:10.1007/s10722-004-6696-6Hounsome, N., Hounsome, B., Tomos, D., & Edwards-Jones, G. (2008). Plant Metabolites and Nutritional Quality of Vegetables. Journal of Food Science, 73(4), R48-R65. doi:10.1111/j.1750-3841.2008.00716.xJavanmardi, J., & Kubota, C. (2006). Variation of lycopene, antioxidant activity, total soluble solids and weight loss of tomato during postharvest storage. Postharvest Biology and Technology, 41(2), 151-155. doi:10.1016/j.postharvbio.2006.03.008Kaushik, P., Andújar, I., Vilanova, S., Plazas, M., Gramazio, P., Herraiz, F., … Prohens, J. (2015). Breeding Vegetables with Increased Content in Bioactive Phenolic Acids. Molecules, 20(10), 18464-18481. doi:10.3390/molecules201018464Kuti, J. O., & Konuru, H. B. (2005). Effects of genotype and cultivation environment on lycopene content in red-ripe tomatoes. Journal of the Science of Food and Agriculture, 85(12), 2021-2026. doi:10.1002/jsfa.2205Kyriacou, M. C., & Rouphael, Y. (2018). Towards a new definition of quality for fresh fruits and vegetables. Scientia Horticulturae, 234, 463-469. doi:10.1016/j.scienta.2017.09.046Maamar, B., Maatoug, M., Iriti, M., Dellal, A., & Ait hammou Mohammed. (2015). Physiological effects of ozone exposure on De Colgar and Rechaiga II tomato (Solanum lycopersicum L.) cultivars. Environmental Science and Pollution Research, 22(16), 12124-12132. doi:10.1007/s11356-015-4490-yMercati, F., Longo, C., Poma, D., Araniti, F., Lupini, A., Mammano, M. M., … Sunseri, F. (2014). Genetic variation of an Italian long shelf-life tomato (Solanum lycopersicon L.) collection by using SSR and morphological fruit traits. Genetic Resources and Crop Evolution, 62(5), 721-732. doi:10.1007/s10722-014-0191-5Monforte, A. J., Diaz, A., Caño-Delgado, A., & van der Knaap, E. (2013). The genetic basis of fruit morphology in horticultural crops: lessons from tomato and melon. Journal of Experimental Botany, 65(16), 4625-4637. doi:10.1093/jxb/eru017Mutschler, M. A., Wolfe, D. W., Cobb, E. D., & Yourstone, K. S. (1992). Tomato Fruit Quality and Shelf Life in Hybrids Heterozygous for the alc Ripening Mutant. HortScience, 27(4), 352-355. doi:10.21273/hortsci.27.4.352Ortiz, R., Crossa, J., Vargas, M., & Izquierdo, J. (2006). Studying the effect of environmental variables on the genotype × environment interaction of tomato. Euphytica, 153(1-2), 119-134. doi:10.1007/s10681-006-9248-7Pagno, C. H., Castagna, A., Trivellini, A., Mensuali-Sodi, A., Ranieri, A., Ferreira, E. A., … Flôres, S. H. (2017). The nutraceutical quality of tomato fruit during domestic storage is affected by chitosan coating. Journal of Food Processing and Preservation, 42(1), e13326. doi:10.1111/jfpp.13326Panthee, D. R., Labate, J. A., McGrath, M. T., Breksa, A. P., & Robertson, L. D. (2013). Genotype and environmental interaction for fruit quality traits in vintage tomato varieties. Euphytica, 193(2), 169-182. doi:10.1007/s10681-013-0895-1Pascual, B., Maroto, J. V., Sanbautista, A., López-Galarza, S., & Alagarda, J. (2000). Influence of watering on the yield and cracking of cherry, fresh-market and processing tomatoes. The Journal of Horticultural Science and Biotechnology, 75(2), 171-175. doi:10.1080/14620316.2000.11511218Peet, M. M., & Welles, G. (s. f.). Greenhouse tomato production. Tomatoes, 257-304. doi:10.1079/9780851993966.0257Rick, C. M. (1967). Fruit and pedicel characters derived from Galápagos Tomatoes’. Economic Botany, 21(2), 171-184. doi:10.1007/bf02897867RodrÍGuez-Burruezo, S., Prohens, J., RosellÓ, J., & Nuez, F. (2005). «Heirloom» varieties as sources of variation for the improvement of fruit quality in greenhouse-grown tomatoes. The Journal of Horticultural Science and Biotechnology, 80(4), 453-460. doi:10.1080/14620316.2005.11511959Romero del Castillo, R., Puig-Pey, M., Biarnés, J., Vilaseca, H., Simó, J., Plans, M., … Casañas, F. (2014). Using Trendsetting Chefs to Design New Culinary Preparations with the «Penjar» Tomato. Journal of Culinary Science & Technology, 12(3), 196-214. doi:10.1080/15428052.2014.880099Roselló, S., Adalid, A. M., Cebolla-Cornejo, J., & Nuez, F. (2011). Evaluation of the genotype, environment and their interaction on carotenoid and ascorbic acid accumulation in tomato germplasm. Journal of the Science of Food and Agriculture, 91(6), 1014-1021. doi:10.1002/jsfa.4276Sánchez-González, M. J., Sánchez-Guerrero, M. C., Medrano, E., Porras, M. E., Baeza, E. J., & Lorenzo, P. (2015). Influence of pre-harvest factors on quality of a winter cycle, high commercial value, tomato cultivar. Scientia Horticulturae, 189, 104-111. doi:10.1016/j.scienta.2015.03.044Sánchez-Moreno, C., Plaza, L., de Ancos, B., & Cano, M. P. (2005). Impact of high-pressure and traditional thermal processing of tomato purée on carotenoids, vitamin C and antioxidant activity. Journal of the Science of Food and Agriculture, 86(2), 171-179. doi:10.1002/jsfa.2321Scott, J., Myers, J., Boches, P., Nichols, C., & Angell, F. (2013). Classical Genetics and Traditional Breeding. Genetics, Genomics, and Breeding of Tomato, 37-73. doi:10.1201/b14578-3Tranchida-Lombardo, V., Aiese Cigliano, R., Anzar, I., Landi, S., Palombieri, S., Colantuono, C., … Grillo, S. (2017). Whole-genome re-sequencing of two Italian tomato landraces reveals sequence variations in genes associated with stress tolerance, fruit quality and long shelf-life traits. DNA Research, 25(2), 149-160. doi:10.1093/dnares/dsx045Yamaguchi, M. (1983). Solanaceous Fruits: Tomato, Eggplant, Peppers, and Others. World Vegetables, 291-311. doi:10.1007/978-94-011-7907-2_22Zhang, Y., Butelli, E., De Stefano, R., Schoonbeek, H., Magusin, A., Pagliarani, C., … Martin, C. (2013). Anthocyanins Double the Shelf Life of Tomatoes by Delaying Overripening and Reducing Susceptibility to Gray Mold. Current Biology, 23(12), 1094-1100. doi:10.1016/j.cub.2013.04.07

    WHOLE-GENOME RE-SEQUENCING OF TWO TOMATO LANDRACES REVEALS SEQUENCE VARIATIONS UNDERPINNING KEY ECONOMICALLY IMPORTANT TRAITS

    Get PDF
    In the post-genomic era, one of the major challenges is the identification of alleles directly responsible for phenotype variation among different genotypes within the same species. Tomato is a model crop for understanding the development and ripening of climacteric fleshy fruits, and it is also known to be an important source of health-promoting compounds. In addition, cultivated tomato germplasm shows a high phenotypic variation despite its very low genetic diversity. Toward the identification of sequence variations responsible for stress tolerance, high fruit quality and long shelf life, we re-sequenced the genomes of two traditional landraces grown in the Campania region (Southern Italy). Crovarese, belonging to the Corbarino type (COR), and Lucariello (LUC) are typically grown under low water regimes and produce highly appreciated fruits, which can be stored up to 4-8 months. We generated 65.8M and 56.4M of paired-end 30-150 bp reads with an average insert size of 380 bp (± 52bp) and 364 bp (± 49bp) for COR and LUC, respectively. A referenceguided assembly was performed using 'Heinz 1706' as a reference genome. We estimated a mean coverage depth of ~15X for COR and 13X for LUC. Comparing the genomes of COR and LUC with that of 'Heinz 1706' we found a similar distribution of SNPs (68.8% vs. 69.9%, respectively), small deletions (8.9% vs. 8.6%) and small insertions (22.1% vs. 21.3%). Through a de novo assembly of the unmapped reads we identified 29 and 36 new contigs in COR and LUC, respectively. The new contigs could be assigned to the chromosomes thanks to the use of a splitread approach. On average, the contigs inserted in COR were 654bp, whereas those inserted in LUC were 616bp. Using custom RNA-seq data, a total of 43054 and 44576 gene loci were annotated in COR and LUC, corresponding to 62369 and 65094 transcripts, respectively. Among the genes showing a similar structure in COR and LUC compared to 'Heinz 1706', we identified ~2000 and 1700 SNPs causing potentially disruptive effects on the function of 1371 and 1201 genes in COR and LUC, respectively. Interesting GO categories highly represented in genes affected by sequence changes were identified. Major variations were present in stress-responsive genes as well as in fruit quality and development-related genes. From a practical perspective, the identified SNPs and InDels are candidate polymorphisms to track DNA variations associated to key traits of economic interest

    Whole-Genome Resequencing of Seven Eggplant (Solanum melongena) and One Wild Relative (S. incanum) Accessions Provides New Insights and Breeding Tools for Eggplant Enhancement

    Get PDF
    [EN] Whole-genome resequencing provides information of great relevance for crop genetics, evolution, and breeding. Here, we present the first whole-genome resequencing study using seven eggplant (Solanum melongena) and one wild relative (Solanum incanum) accessions. These eight accessions were selected for displaying a high phenotypic and genetic diversity and for being the founder parents of an eggplant multiparent advanced generation intercrosses population. By resequencing at an average depth of 19.8x and comparing to the high-quality reference genome "67/3" over 10 million high-reliable polymorphisms were discovered, of which over 9 million (84.5%) were single nucleotide polymorphisms and more than 700,000 (6.5%) InDels. However, while for the S. melongena accessions, the variants identified ranged from 0.8 to 1.3 million, over 9 million were detected for the wild S. incanum. This confirms the narrow genetic diversity of the domesticated eggplant and suggests that introgression breeding using wild relatives can efficiently contribute to broadening the genetic basis of this crop. Differences were observed among accessions for the enrichment in genes regulating important biological processes. By analyzing the distribution of the variants, we identified the potential footprints of old introgressions from wild relatives that can help to unravel the unclear domestication and breeding history. The comprehensive annotation of these eight genomes and the information provided in this study represents a landmark in eggplant genomics and allows the development of tools for eggplant genetics and breeding.This work has been funded by the European Union's Horizon 2020 Research and Innovation Programme under grant agreement no. 677379 (G2P-SOL project: Linking genetic resources, genomes, and phenotypes of Solanaceous crops), by the Spanish Ministerio de Economia, Industria y Competitividad and Fondo Europeo de Desarrollo Regional/European Regional Development Fund (grant AGL2015-64755-R), and by the Spanish Ministerio de Ciencia, Innovacion y Universidades (MCIU), Agencia Estatal de Investigacion (AEI), and Fondo Europeo de Desarrollo Regional/European Regional Development Fund (grant RTI2018-09592-B-100). PG is grateful to Universitat Politecnica de Valencia and to Japan Society for the Promotion of Science for their respective postdoctoral grants [PAID-10-18 and FY2019 JSPS Postdoctoral Fellowship for Research in Japan (Standard)].Gramazio, P.; Yan, H.; Hasing, T.; Vilanova Navarro, S.; Prohens Tomás, J.; Bombarely, A. (2019). Whole-Genome Resequencing of Seven Eggplant (Solanum melongena) and One Wild Relative (S. incanum) Accessions Provides New Insights and Breeding Tools for Eggplant Enhancement. Frontiers in Plant Science. 10:1-17. https://doi.org/10.3389/fpls.2019.01220S11710Acquadro, A., Barchi, L., Gramazio, P., Portis, E., Vilanova, S., Comino, C., … Lanteri, S. (2017). Coding SNPs analysis highlights genetic relationships and evolution pattern in eggplant complexes. PLOS ONE, 12(7), e0180774. doi:10.1371/journal.pone.0180774Alonso-Blanco, C., Andrade, J., Becker, C., Bemm, F., Bergelson, J., Borgwardt, K. M., … Ding, W. (2016). 1,135 Genomes Reveal the Global Pattern of Polymorphism in Arabidopsis thaliana. Cell, 166(2), 481-491. doi:10.1016/j.cell.2016.05.063Aronesty, E. (2013). Comparison of Sequencing Utility Programs. The Open Bioinformatics Journal, 7(1), 1-8. doi:10.2174/1875036201307010001Barchi, L., Lanteri, S., Portis, E., Acquadro, A., Valè, G., Toppino, L., & Rotino, G. L. (2011). Identification of SNP and SSR markers in eggplant using RAD tag sequencing. BMC Genomics, 12(1). doi:10.1186/1471-2164-12-304Barchi, L., Pietrella, M., Venturini, L., Minio, A., Toppino, L., Acquadro, A., … Rotino, G. L. (2019). A chromosome-anchored eggplant genome sequence reveals key events in Solanaceae evolution. Scientific Reports, 9(1). doi:10.1038/s41598-019-47985-wBarchi, L., Acquadro, A., Alonso, D., Aprea, G., Bassolino, L., Demurtas, O., … Giuliano, G. (2019). Single Primer Enrichment Technology (SPET) for High-Throughput Genotyping in Tomato and Eggplant Germplasm. Frontiers in Plant Science, 10. doi:10.3389/fpls.2019.01005Bao, G., Zhuo, C., Qian, C., Xiao, T., Guo, Z., & Lu, S. (2015). Co-expression ofNCEDandALOimproves vitamin C level and tolerance to drought and chilling in transgenic tobacco and stylo plants. Plant Biotechnology Journal, 14(1), 206-214. doi:10.1111/pbi.12374Brozynska, M., Furtado, A., & Henry, R. J. (2015). Genomics of crop wild relatives: expanding the gene pool for crop improvement. Plant Biotechnology Journal, 14(4), 1070-1085. doi:10.1111/pbi.12454Cao, J., Schneeberger, K., Ossowski, S., Günther, T., Bender, S., Fitz, J., … Weigel, D. (2011). Whole-genome sequencing of multiple Arabidopsis thaliana populations. Nature Genetics, 43(10), 956-963. doi:10.1038/ng.911Causse, M., Desplat, N., Pascual, L., Le Paslier, M.-C., Sauvage, C., Bauchet, G., … Bouchet, J.-P. (2013). Whole genome resequencing in tomato reveals variation associated with introgression and breeding events. BMC Genomics, 14(1), 791. doi:10.1186/1471-2164-14-791Cavanagh, C., Morell, M., Mackay, I., & Powell, W. (2008). From mutations to MAGIC: resources for gene discovery, validation and delivery in crop plants. Current Opinion in Plant Biology, 11(2), 215-221. doi:10.1016/j.pbi.2008.01.002Cericola, F., Portis, E., Toppino, L., Barchi, L., Acciarri, N., Ciriaci, T., … Lanteri, S. (2013). The Population Structure and Diversity of Eggplant from Asia and the Mediterranean Basin. PLoS ONE, 8(9), e73702. doi:10.1371/journal.pone.0073702Cingolani, P., Platts, A., Wang, L. L., Coon, M., Nguyen, T., Wang, L., … Ruden, D. M. (2012). A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff. Fly, 6(2), 80-92. doi:10.4161/fly.19695Conesa, A., Gotz, S., Garcia-Gomez, J. M., Terol, J., Talon, M., & Robles, M. (2005). Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics, 21(18), 3674-3676. doi:10.1093/bioinformatics/bti610Danecek, P., Auton, A., Abecasis, G., Albers, C. A., Banks, E., … DePristo, M. A. (2011). The variant call format and VCFtools. Bioinformatics, 27(15), 2156-2158. doi:10.1093/bioinformatics/btr330Dempewolf, H., Baute, G., Anderson, J., Kilian, B., Smith, C., & Guarino, L. (2017). Past and Future Use of Wild Relatives in Crop Breeding. Crop Science, 57(3), 1070-1082. doi:10.2135/cropsci2016.10.0885Deng, Y., Srivastava, R., & Howell, S. H. (2013). Protein kinase and ribonuclease domains of IRE1 confer stress tolerance, vegetative growth, and reproductive development in Arabidopsis. Proceedings of the National Academy of Sciences, 110(48), 19633-19638. doi:10.1073/pnas.1314749110Jadhav, S. K., Tiwari, K. L., & Gupta, S. (2012). Modified CTAB Technique for Isolation of DNA from some Medicinal Plants. Research Journal of Medicinal Plant, 6(1), 65-73. doi:10.3923/rjmp.2012.65.73Du, X., Huang, G., He, S., Yang, Z., Sun, G., Ma, X., … Li, F. (2018). Resequencing of 243 diploid cotton accessions based on an updated A genome identifies the genetic basis of key agronomic traits. Nature Genetics, 50(6), 796-802. doi:10.1038/s41588-018-0116-xFelcher, K. J., Coombs, J. J., Massa, A. N., Hansey, C. N., Hamilton, J. P., Veilleux, R. E., … Douches, D. S. (2012). Integration of Two Diploid Potato Linkage Maps with the Potato Genome Sequence. PLoS ONE, 7(4), e36347. doi:10.1371/journal.pone.0036347Fu, L., Niu, B., Zhu, Z., Wu, S., & Li, W. (2012). CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics, 28(23), 3150-3152. doi:10.1093/bioinformatics/bts565Gao, L., Gonda, I., Sun, H., Ma, Q., Bao, K., Tieman, D. M., … Fei, Z. (2019). The tomato pan-genome uncovers new genes and a rare allele regulating fruit flavor. Nature Genetics, 51(6), 1044-1051. doi:10.1038/s41588-019-0410-2Gisbert, C., Prohens, J., Raigón, M. D., Stommel, J. R., & Nuez, F. (2011). Eggplant relatives as sources of variation for developing new rootstocks: Effects of grafting on eggplant yield and fruit apparent quality and composition. Scientia Horticulturae, 128(1), 14-22. doi:10.1016/j.scienta.2010.12.007Gong, Z., Lee, H., Xiong, L., Jagendorf, A., Stevenson, B., & Zhu, J.-K. (2002). RNA helicase-like protein as an early regulator of transcription factors for plant chilling and freezing tolerance. Proceedings of the National Academy of Sciences, 99(17), 11507-11512. doi:10.1073/pnas.172399299Gramazio, P., Prohens, J., Plazas, M., Andújar, I., Herraiz, F. J., Castillo, E., … Vilanova, S. (2014). Location of chlorogenic acid biosynthesis pathway and polyphenol oxidase genes in a new interspecific anchored linkage map of eggplant. BMC Plant Biology, 14(1). doi:10.1186/s12870-014-0350-zGramazio, P., Blanca, J., Ziarsolo, P., Herraiz, F. J., Plazas, M., Prohens, J., & Vilanova, S. (2016). Transcriptome analysis and molecular marker discovery in Solanum incanum and S. aethiopicum, two close relatives of the common eggplant (Solanum melongena) with interest for breeding. BMC Genomics, 17(1). doi:10.1186/s12864-016-2631-4Gramazio, P., Prohens, J., Plazas, M., Mangino, G., Herraiz, F. J., & Vilanova, S. (2017). Development and Genetic Characterization of Advanced Backcross Materials and An Introgression Line Population of Solanum incanum in a S. melongena Background. Frontiers in Plant Science, 8. doi:10.3389/fpls.2017.01477Gramazio, P., Prohens, J., Borràs, D., Plazas, M., Herraiz, F. J., & Vilanova, S. (2017). Comparison of transcriptome-derived simple sequence repeat (SSR) and single nucleotide polymorphism (SNP) markers for genetic fingerprinting, diversity evaluation, and establishment of relationships in eggplants. Euphytica, 213(12). doi:10.1007/s10681-017-2057-3GRAMAZIO, P., PROHENS, J., PLAZAS, M., MANGINO, G., HERRAIZ, F. J., GARCÍA-FORTEA, E., & VILANOVA, S. (2018). Genomic Tools for the Enhancement of Vegetable Crops: A Case in Eggplant. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 46(1), 1-13. doi:10.15835/nbha46110936Grzebelus, D., Gładysz, M., Macko-Podgórni, A., Gambin, T., Golis, B., Rakoczy, R., & Gambin, A. (2009). Population dynamics of miniature inverted-repeat transposable elements (MITEs) in Medicago truncatula. Gene, 448(2), 214-220. doi:10.1016/j.gene.2009.06.004Guo, S., Zhang, J., Sun, H., Salse, J., Lucas, W. J., Zhang, H., … Wang, Z. (2012). The draft genome of watermelon (Citrullus lanatus) and resequencing of 20 diverse accessions. Nature Genetics, 45(1), 51-58. doi:10.1038/ng.2470Hill, T. A., Ashrafi, H., Reyes-Chin-Wo, S., Yao, J., Stoffel, K., Truco, M.-J., … Van Deynze, A. (2013). Characterization of Capsicum annuum Genetic Diversity and Population Structure Based on Parallel Polymorphism Discovery with a 30K Unigene Pepper GeneChip. PLoS ONE, 8(2), e56200. doi:10.1371/journal.pone.0056200Hirakawa, H., Shirasawa, K., Miyatake, K., Nunome, T., Negoro, S., Ohyama, A., … Fukuoka, H. (2014). Draft Genome Sequence of Eggplant (Solanum melongena L.): the Representative Solanum Species Indigenous to the Old World. DNA Research, 21(6), 649-660. doi:10.1093/dnares/dsu027Hu, J., Manduzio, S., & Kang, H. (2019). Epitranscriptomic RNA Methylation in Plant Development and Abiotic Stress Responses. Frontiers in Plant Science, 10. doi:10.3389/fpls.2019.00500Huang, X., Wei, X., Sang, T., Zhao, Q., Feng, Q., Zhao, Y., … Han, B. (2010). Genome-wide association studies of 14 agronomic traits in rice landraces. Nature Genetics, 42(11), 961-967. doi:10.1038/ng.695Hulse-Kemp, A. M., Ashrafi, H., Plieske, J., Lemm, J., Stoffel, K., Hill, T., … Van Deynze, A. (2016). A HapMap leads to a Capsicum annuum SNP infinium array: a new tool for pepper breeding. Horticulture Research, 3(1). doi:10.1038/hortres.2016.36Hurtado, M., Vilanova, S., Plazas, M., Gramazio, P., Andújar, I., Herraiz, F. J., … Prohens, J. (2014). Enhancing conservation and use of local vegetable landraces: the Almagro eggplant (Solanum melongena L.) case study. Genetic Resources and Crop Evolution, 61(4), 787-795. doi:10.1007/s10722-013-0073-2Ihaka, R., & Gentleman, R. (1996). R: A Language for Data Analysis and Graphics. Journal of Computational and Graphical Statistics, 5(3), 299-314. doi:10.1080/10618600.1996.10474713Kim, C., Guo, H., Kong, W., Chandnani, R., Shuang, L.-S., & Paterson, A. H. (2016). Application of genotyping by sequencing technology to a variety of crop breeding programs. Plant Science, 242, 14-22. doi:10.1016/j.plantsci.2015.04.016Kim, S., Park, M., Yeom, S.-I., Kim, Y.-M., Lee, J. M., Lee, H.-A., … Kim, K.-T. (2014). Genome sequence of the hot pepper provides insights into the evolution of pungency in Capsicum species. Nature Genetics, 46(3), 270-278. doi:10.1038/ng.2877Knapp, S., Vorontsova, M. S., & Prohens, J. (2013). Wild Relatives of the Eggplant (Solanum melongena L.: Solanaceae): New Understanding of Species Names in a Complex Group. PLoS ONE, 8(2), e57039. doi:10.1371/journal.pone.0057039Kouassi, B., Prohens, J., Gramazio, P., Kouassi, A. B., Vilanova, S., Galán-Ávila, A., … Plazas, M. (2016). Development of backcross generations and new interspecific hybrid combinations for introgression breeding in eggplant ( Solanum melongena ). Scientia Horticulturae, 213, 199-207. doi:10.1016/j.scienta.2016.10.039Lam, H.-M., Xu, X., Liu, X., Chen, W., Yang, G., Wong, F.-L., … Zhang, G. (2010). Resequencing of 31 wild and cultivated soybean genomes identifies patterns of genetic diversity and selection. Nature Genetics, 42(12), 1053-1059. doi:10.1038/ng.715Langmead, B., & Salzberg, S. L. (2012). Fast gapped-read alignment with Bowtie 2. Nature Methods, 9(4), 357-359. doi:10.1038/nmeth.1923Levin, H. L., & Moran, J. V. (2011). Dynamic interactions between transposable elements and their hosts. Nature Reviews Genetics, 12(9), 615-627. doi:10.1038/nrg3030Lewicki, T. (1974). West African Food in the Middle Ages. doi:10.1017/cbo9780511759796Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., … Homer, N. (2009). The Sequence Alignment/Map format and SAMtools. Bioinformatics, 25(16), 2078-2079. doi:10.1093/bioinformatics/btp352Li, H. (2014). Toward better understanding of artifacts in variant calling from high-coverage samples. Bioinformatics, 30(20), 2843-2851. doi:10.1093/bioinformatics/btu356Lin, T., Zhu, G., Zhang, J., Xu, X., Yu, Q., Zheng, Z., … Huang, S. (2014). Genomic analyses provide insights into the history of tomato breeding. Nature Genetics, 46(11), 1220-1226. doi:10.1038/ng.3117Liu, J., Zheng, Z., Zhou, X., Feng, C., & Zhuang, Y. (2014). Improving the resistance of eggplant (Solanum melongena) to Verticillium wilt using wild species Solanum linnaeanum. Euphytica, 201(3), 463-469. doi:10.1007/s10681-014-1234-xMahesh, S., & Udayakumar, M. (2017). Peanut RNA Helicase AhRH47 Sustains Protein Synthesis Under Stress and Improves Stress Adaptation in Arabidopsis. Plant Molecular Biology Reporter, 36(1), 58-70. doi:10.1007/s11105-017-1056-9Meyer, R. S., Karol, K. G., Little, D. P., Nee, M. H., & Litt, A. (2012). Phylogeographic relationships among Asian eggplants and new perspectives on eggplant domestication. Molecular Phylogenetics and Evolution, 63(3), 685-701. doi:10.1016/j.ympev.2012.02.006Meyer, R. S., Whitaker, B. D., Little, D. P., Wu, S.-B., Kennelly, E. J., Long, C.-L., & Litt, A. (2015). Parallel reductions in phenolic constituents resulting from the domestication of eggplant. Phytochemistry, 115, 194-206. doi:10.1016/j.phytochem.2015.02.006Michalovova, M., Vyskot, B., & Kejnovsky, E. (2013). Analysis of plastid and mitochondrial DNA insertions in the nucleus (NUPTs and NUMTs) of six plant species: size, relative age and chromosomal localization. Heredity, 111(4), 314-320. doi:10.1038/hdy.2013.51Muñoz-Falcón, J. E., Prohens, J., Vilanova, S., & Nuez, F. (2008). Characterization, diversity, and relationships of the Spanish striped (Listada) eggplants: a model for the enhancement and protection of local heirlooms. Euphytica, 164(2), 405-419. doi:10.1007/s10681-008-9688-3Muñoz-Falcón, J. E., Prohens, J., Vilanova, S., Ribas, F., Castro, A., & Nuez, F. (2008). Distinguishing a protected geographical indication vegetable (Almagro eggplant) from closely related varieties with selected morphological traits and molecular markers. Journal of the Science of Food and Agriculture, 89(2), 320-328. doi:10.1002/jsfa.3452Muñoz-Falcón, J. E., Prohens, J., Vilanova, S., & Nuez, F. (2009). Diversity in commercial varieties and landraces of black eggplants and implications for broadening the breeders’ gene pool. Annals of Applied Biology, 154(3), 453-465. doi:10.1111/j.1744-7348.2009.00314.xNaito, K., Cho, E., Yang, G., Campbell, M. A., Yano, K., Okumoto, Y., … Wessler, S. R. (2006). Dramatic amplification of a rice transposable element during recent domestication. Proceedings of the National Academy of Sciences, 103(47), 17620-17625. doi:10.1073/pnas.0605421103Nelson, M. G., Linheiro, R. S., & Bergman, C. M. (2017). McClintock: An Integrated Pipeline for Detecting Transposable Element Insertions in Whole-Genome Shotgun Sequencing Data. G3: Genes|Genomes|Genetics, 7(8), 2763-2778. doi:10.1534/g3.117.043893Nidumukkala, S., Tayi, L., Chittela, R. K., Vudem, D. R., & Khareedu, V. R. (2019). DEAD box helicases as promising molecular tools for engineering abiotic stress tolerance in plants. Critical Reviews in Biotechnology, 39(3), 395-407. doi:10.1080/07388551.2019.1566204Pascual, L., Desplat, N., Huang, B. E., Desgroux, A., Bruguier, L., Bouchet, J.-P., … Causse, M. (2014). Potential of a tomato MAGIC population to decipher the genetic control of quantitative traits and detect causal variants in the resequencing era. Plant Biotechnology Journal, 13(4), 565-577. doi:10.1111/pbi.12282Paterson, A. H., Bowers, J. E., Bruggmann, R., Dubchak, I., Grimwood, J., Gundlach, H., … Rokhsar, D. S. (2009). The Sorghum bicolor genome and the diversification of grasses. Nature, 457(7229), 551-556. doi:10.1038/nature07723Plazas, M., Vilanova, S., Gramazio, P., Rodríguez-Burruezo, A., Fita, A., Herraiz, F. J., … Prohens, J. (2016). Interspecific Hybridization between Eggplant and Wild Relatives from Different Genepools. Journal of the American Society for Horticultural Science, 141(1), 34-44. doi:10.21273/jashs.141.1.34(2011). Genome sequence and analysis of the tuber crop potato. Nature, 475(7355), 189-195. doi:10.1038/nature10158Prohens, J., Gramazio, P., Plazas, M., Dempewolf, H., Kilian, B., Díez, M. J., … Vilanova, S. (2017). Introgressiomics: a new approach for using crop wild relatives in breeding for adaptation to climate change. Euphytica, 213(7). doi:10.1007/s10681-017-1938-9Prohens, J., Whitaker, B. D., Plazas, M., Vilanova, S., Hurtado, M., Blasco, M., … Stommel, J. R. (2013). Genetic diversity in morphological characters and phenolic acids content resulting from an interspecific cross between eggplant,Solanum melongena, and its wild ancestor (S. incanum). Annals of Applied Biology, 162(2), 242-257. doi:10.1111/aab.12017Qi, J., Liu, X., Shen, D., Miao, H., Xie, B., Li, X., … Huang, S. (2013). A genomic variation map provides insights into the genetic basis of cucumber domestication and diversity. Nature Genetics, 45(12), 1510-1515. doi:10.1038/ng.2801Quinlan, A. R., & Hall, I. M. (2010). BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics, 26(6), 841-842. doi:10.1093/bioinformatics/btq033Ranil, R. H. G., Niran, H. M. L., Plazas, M., Fonseka, R. M., Fonseka, H. H., Vilanova, S., … Prohens, J. (2015). Improving seed germination of the eggplant rootstock Solanum torvum by testing multiple factors using an orthogonal array design. Scientia Horticulturae, 193, 174-181. doi:10.1016/j.scienta.2015.07.030Salas, P., Prohens, J., & Seguí-Simarro, J. M. (2011). Evaluation of androgenic competence through anther culture in common eggplant and related species. Euphytica, 182(2), 261-274. doi:10.1007/s10681-011-0490-2Salikhov, K., Sacomoto, G., & Kucherov, G. (2014). Using cascading Bloom filters to improve the memory usage for de Brujin graphs. Algorithms for Molecular Biology, 9(1), 2. doi:10.1186/1748-7188-9-2Särkinen, T., Bohs, L., Olmstead, R. G., & Knapp, S. (2013). A phylogenetic framework for evolutionary study of the nightshades (Solanaceae): a dated 1000-tip tree. BMC Evolutionary Biology, 13(1), 214. doi:10.1186/1471-2148-13-214Schnable, P. S., Ware, D., Fulton, R. S., Stein, J. C., Wei, F., Pasternak, S., … Graves, T. A. (2009). The B73 Maize Genome: Complexity, Diversity, and Dynamics. Science, 326(5956), 1112-1115. doi:10.1126/science.1178534Shi, L., Wu, Y., & Sheen, J. (2018). TOR signaling in plants: conservation and innovation. Development, 145(13), dev160887. doi:10.1242/dev.160887Shivakumara, T. N., Sreevathsa, R., Dash, P. K., Sheshshayee, M. S., Papolu, P. K., Rao, U., … UdayaKumar, M. (2017). Overexpression of Pea DNA Helicase 45 (PDH45) imparts tolerance to multiple abiotic stresses in chili (Capsicum annuum L.). Scientific Reports, 7(1). doi:10.1038/s41598-017-02589-0Sim, S.-C., Durstewitz, G., Plieske, J., Wieseke, R., Ganal, M. W., Van Deynze, A., … Francis, D. M. (2012). Development of a Large SNP Genotyping Array and Generation of High-Density Genetic Maps in Tomato. PLoS ONE, 7(7), e40563. doi:10.1371/journal.pone.0040563Sim, S.-C., Van Deynze, A., Stoffel, K., Douches, D. S., Zarka, D., Ganal, M. W., … Francis, D. M. (2012). High-Density SNP Genotyping of Tomato (Solanum lycopersicum L.) Reveals Patterns of Genetic Variation Due to Breeding. PLoS ONE, 7(9), e45520. doi:10.1371/journal.pone.0045520Stommel, J. R., & Whitaker, B. D. (2003). Phenolic Acid Content and Composition of Eggplant Fruit in a Germplasm Core Subset. Journal of the American Society for Horticultural Science, 128(5), 704-710. doi:10.21273/jas

    Biosynthesis of Salvia specialized metabolites and biotechnological approaches to increase their production

    No full text
    Aromatic Salvia species are particularly valuable for providing several bioactive compounds used as food additives, pigments, cosmetics, perfumes and fine chemicals. Within the Lamiaceae family, the Salvia genus, with more than 900 species, biosynthesizes a plethora of beneficial metabolites including terpenes, steroids and polyphenols. The whole plant can be considered a factory of bioactive compounds, but plant cell and tissue cultures are also an attractive sustainable alternative to cultivation. Salvia cell cultures can readily be initiated from different explants, including leaves, roots, stems, petioles, anthers and seedlings; however high metabolites accumulation in plant tissue and cell culture is a prerequisite for massive production of these bioactive compounds. In this chapter, the occurrence and tissue distribution of specialized metabolites in several Salvia species, especially flavonoids and diterpenoids, will be reviewed along with recent advances in the understanding of biosynthetic pathways as well as regulatory mechanisms leading to their biosynthesis. We will focus on the recent biotechnological approaches aimed at enhancing the final biomass and metabolite accumulation in Salvia cell and tissue cultures. Advances in metabolic engineering strategies will be also summarized, reporting relevant and successful results and potential pitfalls, in order to provide valuable perspectives for design and developing cell and tissue cultures as a reliable and standardized biomass platform for the extraction of Salvia bioactive metabolites
    corecore