15,674 research outputs found

    Indochinese Mental Health In North America: Measures, Status, and Treatments

    Get PDF
    The massive influx of Indochinese refugees and immigrants to North America since the end of the Indochina war, especially to the United States of America, has resulted in numerous multi-disciplinary efforts to document and study their mental well-being. As a group, Indochinese Americans arrived from war-torn countries where many had experienced various forms of trauma, poverty, and oppression. Their pre-migration experiences, and experiences in adjusting and adapting to the new life in the host society have influenced their mental health status and overall quality of life in various ways. This paper analyzes and synthesizes a wealth of multi-disciplinary research on the mental health of Indochinese Americans over the course of two decades. The content of the paper encompasses three important dimensions: measures, status, and treatment. Practical implications are presented and discussed around each dimension of mental health research

    Initial correlations in nonequilibrium Falicov-Kimball model

    Full text link
    The Keldysh boundary problem in a nonequilibrium Falicov-Kimball model in infinite dimensions is studied within the truncated and self-consistent perturbation theories, and the dynamical mean-field theory. Within the model the system is started in equilibrium, and later a uniform electric field is turned on. The Kadanoff-Baym-Wagner equations for the nonequilibrium Green functions are derived, and numerically solved. The contributions of initial correlations are studied by monitoring the system evolution. It is found that the initial correlations are essential for establishing full electron correlations of the system and independent on the starting time of preparing the system in equilibrium. By examining the contributions of the initial correlations to the electric current and the double occupation, we find that the contributions are small in relation to the total value of those physical quantities when the interaction is weak, and significantly increase when the interaction is strong. The neglect of initial correlations may cause artifacts in the nonequilibrium properties of the system, especially in the strong interaction case

    Pressure moderation and effective pressure in Navier-Stokes flows

    Get PDF
    We study the Cauchy problem of the Navier–Stokes equations by both semi-analytic and classical energy methods. The former approach provides a physical picture of how viscous effects may or may not be able to suppress singularity development. In the latter approach, we examine the pressure term that drives the dynamics of the velocity norms ||u||Lq , for q ≄ 3. A key idea behind this investigation is due to the fact that the pressure p in this term is determined upto a function of both space and |u|, say Æ€(x, |u|), which may assume relatively broad forms. This allows us to use Æ€ as a pressure moderator in the evolution equation for ||u||Lq , whereby optimal regularity criteria can be sought by varying Æ€ within its admissible classes. New regularity criteria are derived with and without making use of the moderator. The results obtained in the absence of the moderator feature some improvement over existing criteria in the literature. Several criteria are derived in terms of the moderated (effective) pressure p+Æ€. A simple moderation scheme and the plausibility of the present approach to the problem of Navier–Stokes regularity are discussed.PostprintPeer reviewe

    Chemical pre-processing of cluster galaxies over the past 10 billion years in the IllustrisTNG simulations

    Full text link
    We use the IllustrisTNG simulations to investigate the evolution of the mass-metallicity relation (MZR) for star-forming cluster galaxies as a function of the formation history of their cluster host. The simulations predict an enhancement in the gas-phase metallicities of star-forming cluster galaxies (10^9< M_star<10^10 M_sun) at z<1.0 in comparisons to field galaxies. This is qualitatively consistent with observations. We find that the metallicity enhancement of cluster galaxies appears prior to their infall into the central cluster potential, indicating for the first time a systematic "chemical pre-processing" signature for {\it infalling} cluster galaxies. Namely, galaxies which will fall into a cluster by z=0 show a ~0.05 dex enhancement in the MZR compared to field galaxies at z<0.5. Based on the inflow rate of gas into cluster galaxies and its metallicity, we identify that the accretion of pre-enriched gas is the key driver of the chemical evolution of such galaxies, particularly in the stellar mass range (10^9< M_star<10^10 M_sun). We see signatures of an environmental dependence of the ambient/inflowing gas metallicity which extends well outside the nominal virial radius of clusters. Our results motivate future observations looking for pre-enrichment signatures in dense environments.Comment: 5 pages, 4 figures, accepted for publication in MNRAS Letter

    Whisper-to-speech conversion using restricted Boltzmann machine arrays

    Get PDF
    Whispers are a natural vocal communication mechanism, in which vocal cords do not vibrate normally. Lack of glottal-induced pitch leads to low energy, and an inherent noise-like spectral distribution reduces intelligibility. Much research has been devoted to processing of whispers, including conversion of whispers to speech. Unfortunately, among several approaches, the best reconstructed speech to date still contains obviously artificial muffles and suffers from an unnatural prosody. To address these issues, the novel use of multiple restricted Boltzmann machines (RBMs) is reported as a statistical conversion model between whisper and speech spectral envelopes. Moreover, the accuracy of estimated pitch is improved using machine learning techniques for pitch estimation within only voiced (V) regions. Both objective and subjective evaluations show that this new method improves the quality of whisper-reconstructed speech compared with the state-of-the-art approaches

    Displacement and equilibrium mesh-free formulation based on integrated radial basis functions for dual yield design

    Get PDF
    This paper presents displacement and equilibrium mesh-free formulation based on integrated radial basis functions(iRBF) for upper and lower bound yield design problems. In these approaches, displacement and stress fields are approximated by the integrated radial basis functions, and the equilibrium equations and boundary conditions are imposed directly at the collocation points. In this paper it has been shown that direct nodal integration of the iRBF approximation can prevent volumetric locking in the kinematic formulation, and instability problems can also be avoided. Moreover, with the use of the collocation method in the static problem, equilibrium equations and yield conditions only need to be enforced at the nodes, leading to the reduction in computational cost. The mean value of the approximated upper and lower bound is found to be in excellent agreement with the available analytical solution, and can be considered as the actual collapse load multiplier for most practical engineering problems, for which exact solution is unknown
    • 

    corecore