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Abstract. We study the Cauchy problem of the Navier–Stokes equations by both semi-analytic

and classical energy methods. The former approach provides a physical picture of how viscous

effects may or may not be able to suppress singularity development. In the latter approach, we
examine the pressure term that drives the dynamics of the velocity norms ||u||Lq , for q ≥ 3. A key

idea behind this investigation is due to the fact that the pressure p in this term is determined up
to a function of both space and |u|, say P(x, |u|), which may assume relatively broad forms. This

allows us to use P as a pressure moderator in the evolution equation for ||u||Lq , whereby optimal

regularity criteria can be sought by varying P within its admissible classes. New regularity criteria
are derived with and without making use of the moderator. The results obtained in the absence of

the moderator feature some improvement over existing criteria in the literature. Several criteria

are derived in terms of the moderated (effective) pressure p+P. A simple moderation scheme and
the plausibility of the present approach to the problem of Navier–Stokes regularity are discussed.

1. Introduction

We study the Cauchy problem of the Navier–Stokes system

∂u

∂t
+ (u · ∇)u+∇p = ∆u, (1)

∇ · u = 0,

u(x, 0) = u0(x),

where u is the fluid velocity, p is the pressure and the kinematic viscosity coefficient has been set to
unity for convenience. The fluid is assumed to fill all R3 with the usual condition of sufficient decay
at infinity. The initial velocity field u0(x) is incompressible and sufficiently regular. Given such an
initial velocity, it is well known that the solution remains regular at least up to some time t = T ,
which depends on u0(x). The question is whether or not regularity persists beyond T , particularly
up to all t ≥ T (global regularity). Decades of active research on this issue since Leray’s seminal
studies in the 1930s have resulted in a rich literature [1–35]. Early studies by Prodi [24], Serrin
[26] and Ladyzhenskaya [22] found that regularity (up to some time t) is guaranteed provided that∫ t

0
||u||2q/(q−3)

Lq dτ < ∞, for q > 3. Here ||·||Lq denotes the usual norm in the Lebesque spaces Lq.
Recently, Escauriaza, Seregin and Sverák [14] have extended this criterion to esssup(0,t) ||u||L3 <∞,
for the limiting case q = 3. On the basis of these results, various criteria expressible in terms of the
pressure p and its gradient ∇p have been derived by a number of authors [3, 6, 8, 33]. One of the

main results along this line of research is the criterion
∫ t

0
||p||2α/(2α−3)

Lα dτ < ∞, for α ∈ (3/2,∞),
representing some moderate improvement of the Prodi–Serrin–Ladyzhenskaya result (due to the
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relation ||p||Lα ≤ c ||u||2L2α , where c is a constant and 1 < α < ∞). This means that a loss of
regularity would require not only |u| → ∞ but also |p| → ∞. From a quite different approach,
Seregin and Sverák [25] proved that no singularities can develop if p is bounded from below. The
theory of Navier–Stokes regularity has also been enriched by a number of criteria expressible in
terms of one component of u or ∇u [5, 7, 20, 21, 32, 35], the velocity direction u/|u| [9, 23, 31] or
vorticity direction ω/|ω| [1, 2, 10, 17, 34].

The vast wealth of regularity criteria in the literature, together with the slow theoretical progress
on the problem, appears to have given the impression that viscous effects are not adequate to regu-
larise the nonlinear dynamics. This impression is strengthened by the critical nature of the criterion
esssup(0,t) ||u||L3 <∞, suggesting that further improvement may not be possible, at least by existing
methods. On the contrary, the notion of momentum blow-up is highly counter-intuitive, even for
Euler flows. This notion has been and remains foreign to a large part of the research community in
fluid dynamics. Furthermore, the pressure force responsible for driving local momentum has been
known to be nonlinearly depleted to some extent [29]. It has been suggested that such depletion
might be adequate to ensure non-singular growth of local momentum under viscous effects [29].
Hence, it is not excessively optimistic to hold firm to the belief that Navier–Stokes flows are regular
and that the problem can be fruitfully handled by classical methods.

This study extends the results of Ref. [29] in several directions, by further examining the pressure
force by both semi-analytic and fully analytic methods. Semi-analytic results, though inconclusive,
are derived to illustrate that viscous effects may be strong enough to regularise flows evolving from
sufficiently regular initial velocity fields. Owing to the fact that the pressure p in the term that
drives the dynamics of ||u||Lq , for q ≥ 3, is determined up to some function of space and velocity,
we introduce an effective pressure via such a function – a pressure moderator. This facilitates
the search for optimal regularity criteria from the evolution equation for ||u||Lq , by varying the
moderator within its admissible classes. Rigorous regularity criteria are derived with and without
making use of the moderator. The results obtained in the absence of the moderator feature some
improvement over existing criteria in the literature. Several criteria are derived in terms of the
effective pressure and the results are interpreted. We discuss a simple moderation scheme and the
plausibility of the present approach.

2. background

This section briefly reviews some classical results on which the present study is based. These
include the Calderon–Zigmund inequality relating u to p and the Prodi–Serrin–Ladyzhenskaya
regularity criterion in terms of ||u||Lq .

2.1. Basic estimates. By taking the divergence of the momentum equation in (1) and by virtue
of ∇ · u = 0, we obtain

∆p = −∇ · ((u · ∇)u) = −
3∑

i,j=1

∂i∂j(uiuj). (2)

Taking the gradient of (2) yields

∆∇p = −
3∑

i,j=1

∂i∂j(∇(uiuj)). (3)
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These results allow us to use the Calderon–Zigmund inequality to estimate p and ∇p in terms of u
and ∇u by

||p||Lq ≤ c ||u||2L2q , for 1 < q <∞ (4)

and

||∇p||Lq ≤ c |||u|∇u||Lq , for 1 < q <∞, (5)

where c is a constant. Throughout this study, constants are denoted by c, which may assume
different values from one expression to another.

By Hölder’s inequality and (4) we have∣∣∣∣∣∣p|u|(q−2)/2
∣∣∣∣∣∣2
L2
≤ c ||u||q+2

Lq+2 . (6)

By Sobolev’s inequality we have (also see Ref. [29])

||u||q/2L3q ≤ cq
∣∣∣∣∣∣|u|(q−2)/2∇|u|

∣∣∣∣∣∣
L2
. (7)

We will use (6) and (7) for q ≥ 3 in this study.
The evolution of the local energy |u|2/2 is governed by

∂

∂t

|u|2

2
+ u · ∇|u|

2

2
+ u · ∇p = ∆

|u|2

2
− |∇u|2. (8)

Integrating (8) over the domain yields the equation governing the decay of the global energy

||u||2L2 /2:

1

2

d

dt
||u||2L2 = − ||∇u||2L2 = − ||ω||2L2 , (9)

where the integrals of the advection, pressure and Laplacian terms identically vanish. Integrating
(9) over time yields the bound ∫ t

0

||ω||2L2 dτ ≤
||u0||2L2

2
. (10)

The quantity on the left-hand side of (10) represents cumulative energy dissipation and is among a
few quantities that are a priori controlled. As far as the problem of regularity is concerned, equation
(10) is a basis for estimates of relevant dynamical quantities.

2.2. The Prodi–Serrin–Ladyzhenskaya criterion. This subsection presents a derivation of the

classical criterion
∫ t

0
||u||2q/(q−3)

Lq dτ < ∞, for q > 3. The steps leading to this result are also used
in the subsequent calculations.

Multiplying the momentum equation in (1) by −∆u and integrating the resulting equation over
the domain yield

1

2

d

dt
||ω||2L2 ≤

∫
R3

|∆u||u||∇u|dx− ||∆u||2L2

≤ ||∆u||L2 ||u||Lq ||∇u||Lq′ − ||∆u||
2
L2 , (11)

where 1/q+ 1/q′ = 1/2. By using the Gagliardo–Nirenberg’s inequality (a combination of Hölder’s
and Sobolev’s inequalities in the present case), we can estimate the norm ||∇u||Lq′ by

||∇u||Lq′ ≤ c ||∇u||
1−3/q
L2 ||∆u||3/qL2 . (12)
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Substituting this result into (11) yields

1

2

d

dt
||ω||2L2 ≤ c ||∆u||1+3/q

L2 ||ω||1−3/q
L2 ||u||Lq − ||∆u||

2
L2

≤ c ||u||2q/(q−3)
Lq ||ω||2L2 − c′ ||∆u||2L2 , (13)

where Young’s inequality (again with q > 3) has been used and c′ is another constant. By applying
Gronwall’s lemma to (13) we obtain

||ω||2L2 + c′
∫ t

0

||∆u||2L2 dτ ≤ ||ω0||2L2 exp

{
c

∫ t

0

||u||2q/(q−3)
Lq dτ

}
. (14)

It follows that ||ω||2L2 is finite and ||∆u||2L2 is integrable provided that

∫ t

0

||u||2q/(q−3)
Lq dτ <∞. (15)

This condition turns out to be sufficient to prove finiteness of arbitrarily high order Sobolev norms
of u, thereby ensuring regularity. The extension of (15) to the criterion esssup(0,t) ||u||L3 < ∞
requires a different approach [14], which is beyond the scope of the present study.

3. Preliminary results

3.1. Viscous effects versus pressure force. From a physical point of view, viscous effects can
be expected to adequately suppress growth of local momentum driven by the pressure gradient, at
least for sufficiently regular velocity fields. The reasons can be seen from the latter of following two
observations.

First, equation (8) implies that a fluid particle possessing a local maximum velocity can be
accelerated only if u · ∇p < 0, i.e. only if the particle moves toward lower pressure. Apparently, a
blow-up of the fluid velocity would require infinite acceleration, i.e. û ·∇p→ −∞, where û = u/|u|.
Now since regularity persists whenever ||p||L∞ <∞, the only possibility for û·∇p→ −∞ is p→ −∞.
This result has been deduced by Seregin and Sverák on the basis of a more formal analysis [25].

Second, suppose u ∈ Lq, where q > 3, so that the scaling of peak velocity within a ball of radius
r does not exceed r−3/q in the limit r → 0. As suggested by (4) and (5), given the scaling r−3/q for
|u|, the “forcing” term ∇p scales as r−6/q−1. Meanwhile, the viscosity term ∆u scales as r−3/q−2.
For q > 3, the latter apparently predominates the former. This means that whenever u ∈ Lq,
where q > 3, viscous effects are stronger than the pressure gradient force at peak velocity. As a
consequence, u remains in Lq and regularity is assured. The critical case q = 3 features an exact
balance between the two forces and the present argument is inconclusive. This case corresponds to
the well-known criterion esssup(0,t) ||u||L3 <∞.

We now provide a more formal account of the above observation. Suppose that |u| peaks (glob-
ally) at x0. Let B(x0, r) be a ball centred at x0 with radius r, which can be made as small as
necessary. Figure 1 schematically depicts the flows in the vicinity of x0. Integrating (8) over
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Figure 1. A schematic description of the flows in a neighbourhood of x0 (located
at the centre of the figure), where |u| peaks. The circle represents a ball centred at
x0 with radius r. The arrows represent ∇|u|, which vanishes at x0, while the open
curves represent streamlines.

B(x0, r) yields

1

2

d

dt

∫
B

|u|2 dx = −
∫
B

∇ ·
(
|u|2

2
u+ pu

)
dx+

∫
B

(
∆
|u|2

2
− |∇u|2

)
dx

= −
∫
∂B

(
|u|2

2
u+ pu

)
· ds+

∫
∂B

∇|u|
2

2
· ds−

∫
B

|∇u|2 dx

≤ −
∫
∂B

(
|u|2

2
u+ pu

)
· ds−

∫
B

|∇u|2 dx, (16)

where ∂B denotes the spherical boundary of B. In (16), the divergence theorem has been used and
the second surface integral (expected to be non-positive for some small enough r) in the middle line
has been omitted. Given u ∈ Lq, we have the scalings |u(x0)| ∼ r−3/q, |p| ∼ |u(x0)|2 ∼ r−6/q and
|∇u| ∼ r−3/q−1. The first and second terms on the right-hand side of the final line scale as r−9/q+2

and r−6/q+1, respectively. In the limit r → 0, the latter clearly predominates the former, provided
that q > 3. Hence, |u(x0)| decays and u remains in Lq. Thus, there can be no loss of regularity.

Given a smooth u0(x), a divergence of |u(x0)| ∼ r−3/q by r → 0 without being accompanied
by q → 3+ is ruled out by the regularity criterion esssup(0,t) ||u||L3 < ∞. Hence a development of

singularities would necessarily require |u(x0)| to (strongly) grow via both limits r → 0 and q → 3+

in a concurrent fashion. The above arguments are applicable to this growth scenario. The upshot is
that for smooth u0(x), highly concentrated momentum in the form |u| ∼ r−ε, even for small ε > 0,
may not develop in the first place.

Remark 1. If |u(x0)| ∼ r−3/q, for q < 3, i.e. u0(x) 6∈ L3, then the pressure term predominates the
viscosity term. The above arguments may not rule out the possibility |u(x0)| → ∞. This can be seen
as an explanation for the critical nature of the criterion esssup(0,t) ||u||L3 <∞. As we do not expect
rigorous analysis to “beat” the present semi-analytic arguments, this criterion may not be improved
by standard energy method and analytic inequalities. However, the pressure force is known to have
severe depletion of nonlinearity [29]. Hence, it seems plausible that the theory of Navier–Stokes
regularity can progress within the current framework if such depletion can be exploited.
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Remark 2. Nonlinear depletion of the pressure force manifests itself through cancellation within
the surface integral of pu in (16). Indeed, for sufficiently small r, p may be assumed to have the
same sign on ∂B. It then follows that inflow (flow into B) and outflow make contributions of
opposite signs to the integral, hence cancelling each other to some extent.

3.2. Basic criteria. This subsection considers the evolution of ||u||L3 , ||u||L4 and ||ω||L2 , from which
two regularity criteria are derived. The results feature some improvement over existing ones.

For q ≥ 3, the evolution of ||u||Lq is governed by

||u||q−1
Lq

d

dt
||u||Lq = −

∫
R3

|u|q−2u · ∇p dx+

∫
R3

|u|q−2

(
∆
|u|2

2
− |∇u|2

)
dx (17)

= (q − 2)

∫
R3

p|u|q−2 û · ∇|u|dx− (q − 2)
∣∣∣∣∣∣|u|(q−2)/2∇|u|

∣∣∣∣∣∣2
L2
−
∣∣∣∣∣∣|u|(q−2)/2∇u

∣∣∣∣∣∣2
L2
.

When q = 3, equation (17) reduces to

d

dt
||u||L3 ≤

1

||u||2L3

∫
R3

|p||u||∇|u||dx ≤
c ||u||3L6 ||ω||L2

||u||2L3

≤
c ||ω||4L2

||u||3L3

||u||L3 , (18)

where Hölder’s inequality, (6) and Sobolev’s inequality have been used. Integrating (18) over time
yields the following criterion.

Theorem 1. Let u and p solve the Navier–Stokes equations (1). If∫ t

0

||ω||4L2

||u||3L3

dτ <∞, (19)

then

||u||Lq ≤ ||u0||Lq exp

{
c

∫ t

0

||ω||4L2

||u||3L3

dτ

}
<∞ (20)

and regularity follows.

This slightly improves a previous result of Ref. [29] by a factor of ||u||−1
L3 . Interestingly, the im-

provement is possible by not using the dissipation terms in the evolution equation for ||u||L3 .
It is beneficial to consider a combination of the evolution equations for ||u||L4 and ||ω||L2 , for the

reason to become obvious in due course. For q = 4, equation (17) becomes

||u||3L4

d

dt
||u||L4 = 2

∫
R3

p|u|2 û · ∇|u|dx− 2 |||u|∇|u|||2L2 − |||u|∇u||2L2

≤ 2 ||pu||L2 ||u · ∇|u|||L2 − 2 |||u|∇|u|||2L2 − |||u|∇u||2L2

≤ 1

2
||pu||2L2 − |||u|∇u||2L2 . (21)

Meanwhile, equation (11) can be rewritten in the form

1

2

d

dt
||ω||2L2 ≤ ||∆u||L2 ||(u · ∇)u||L2 − ||∆u||2L2

≤ ||∆u||L2 |||u|∇u||L2 − ||∆u||2L2

≤ |||u|∇u||2L2 −
3

4
||∆u||2L2 . (22)
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Adding (21) and (22) yields

d

dt
||u||4L4 + 2

d

dt
||ω||2L2 ≤ 2 ||pu||2L2 − 3 ||∆u||2L2 ≤ c ||u||6L6 − 3 ||∆u||2L2

=
c ||u||6L6

||u||4L4 + 2 ||ω||2L2

(
||u||4L4 + 2 ||ω||2L2

)
− 3 ||∆u||2L2 , (23)

where equation (6) has been used. From this estimate, we have the following theorems.

Theorem 2. Let u and p solve the Navier–Stokes equations (1). If∫ t

0

||u||6L6

||u||4L4 + 2 ||ω||2L2

dτ <∞, (24)

then both ||u||L4 and ||ω||L2 remain finite and regularity follows.

Theorem 3. Let u and p solve the Navier–Stokes equations (1). There exists c > 0 such that if

||u||L6 ≤ c ||∆u||1/3L2 , (25)

then either ||u||L4 or ||ω||L2 (or both) decays and regularity follows.

Remark 3. While both theorems 2 and 3 make use of the dissipation term ||∆u||2L2 , the latter
exploits this term more fully than the former.

Remark 4. By setting q = 6 and q′ = 3 in (11) and after some simple manipulation, we arrive at

the conclusion that ||ω||L2 decays when ||u||L6 ≤ c ||∆u||1/4L2 . This means that criterion (25) represents

a “gain” in optimality by a factor of ||∆u||1/12
L2 . This gain is due to the fact that in (22), the vortex

stretching term has been estimated as a quadratic rather than a cubic.

Remark 5. Criterion (25) may be replaced by the following version∫ t

0

||u||6L6 dτ ≤ c
∫ t

0

||∆u||2L2 dτ. (26)

Remark 6. Criterion (25) remains unchanged under the scalings p(x, t) 7−→ λ2p(λx, λ2t) and
u(x, t) 7−→ λu(λx, λ2t) that render (1) invariant. Interestingly, the quantities on the left- and right-
hand sides of (25) are, respectively, of large (u) and very small scales (∆u), in comparison with the
small scales represented by ω.

Consider the following version of the Gagliardo–Nirenberg inequality

||u||L6 ≤ c ||∆u||(6−q)/(6+q)
L2 ||u||2q/(6+q)

Lq , (27)

which is valid for 1 ≤ q ≤ 6. In what follows, equation (27) is used with q ∈ (3, 6]. We have∫ t

0

||u||6L6 dτ ≤ c

∫ t

0

||∆u||6(6−q)/(6+q)
L2 ||u||12q/(6+q)

Lq dτ

≤ c

(∫ t

0

||∆u||2L2 dτ

)3(6−q)/(6+q)(∫ t

0

||u||3q/(q−3)
Lq dτ

)4(q−3)/(6+q)

, (28)

where Hölder’s inequality has been used. It follows that equation (26) holds if∫ t

0

||u||3q/(q−3)
Lq dτ ≤ c

∫ t

0

||∆u||2L2 dτ. (29)

Hence we have the following corollary.
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Corollary 1. Let u and p solve the Navier–Stokes equations (1). If∫ t

0

||u||3q/(q−3)
Lq dτ ≤ c

∫ t

0

||∆u||2L2 dτ, (30)

then either ||u||L4 or ||ω||L2 (or both) decays and regularity follows.

4. Pressure moderation and main results

The pressure p in (1) is determined up to an arbitrary function of t. This uninteresting feature
is removed by the condition of decay at infinity. What is remarkable is that in (17), p is determined
up to a function of x and |u|, say P(x, |u|), which can assume relatively broad forms. As far as the
problem of optimal bounds for the pressure term in (17) are concerned, P(x, |u|) presents itself as
a powerful tool. The present study considers using P(x, |u|) to moderate p in the vicinity of peak
velocity, where |p| is also expected to peak. Several regularity criteria are derived in terms of the
“effective” (moderated) pressure p+ P.

We first derive a simple identity concerning the form of P. The result is summarised in the
following lemma.

Lemma 1. Let
P(x, |u|) = f(x)g(|u|),

where
u · ∇f(x) = 0 and g(|u|) ∈ C1,

then ∫
R3

P |u|q−2 û · ∇|u|dx = 0. (31)

Proof. Let

G(s) =
1

sq−2

∫ s

0

ξq−3g(ξ) dξ.

By virtue of ∇ · u = 0 and the hypothesis u · ∇f(x) = 0, we have

∇ ·
(
f(x)G(|u|)|u|q−2 u

)
= f(x)u · ∇

∫ |u|
0

ξq−3g(ξ)dξ

= f(x)g(|u|)|u|q−2 û · ∇|u|. (32)

Integrating (32) over R3 proves the lemma.

Remark 7. Lemma 1 applies to a bounded domain D with nonslip boundary ∂D ∈ C1.

Recall (17)

||u||q−1
Lq

d

dt
||u||Lq = (q − 2)

∫
R3

(p+ P)|u|q−2 û · ∇|u|dx (33)

−(q − 2)
∣∣∣∣∣∣|u|(q−2)/2∇|u|

∣∣∣∣∣∣2
L2
−
∣∣∣∣∣∣|u|(q−2)/2∇u

∣∣∣∣∣∣2
L2
,

where the vanishing term (31) has been inserted. The introduction of this term enables us to seek
optimal estimates for the pressure term by varying P, i.e. varying f(x)g(|u|) within its admissible
classes. For this reason, P and p + P are called the pressure moderator and effective pressure,
respectively. There are essentially two admissible classes for f(x)g(|u|): g(|u|) and f(x)g(|u|), where
the former is obtained by setting f(x) = 1. The hypothesis u·∇f(x) = 0 requires f(x) to be constant
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along streamlines. This appears to be a stiff constraint on f(x), which, nonetheless represents a
“degree of freedom” of the moderator. On the other hand, another degree of freedom of the
moderator is provided by g(|u|), which can be flexible enough for the intended purpose as it is subject
to virtually no conditions, except for decay at infinity as |u| itself. As the very term “moderator”
suggests, we are mainly interested in P such that |p+ P| ≤ |p| in Ω (ideally |p+ P| � |p|). Hence

we may assume in some subsequent calculations that ||p+ P||Lq ≈ ||p||Lq ≤ c ||u||2L2q . Note that
linear combinations of |u|α, for 0 ≤ α ≤ 2, are admissible forms for g(|u|). Of particular interest is
g(|u|) = |u|2, so that f(x)g(|u|) = f(x)|u|2, which may partially neutralise p in the vicinity of its
minimum (negative) since |u|2 is expected to be comparable to |p| in such vicinity.

It has been widely recognised in the turbulence community that rotation (in conjunction with
density stratification) has “regularising effects” on fluid turbulence, by tending to suppress the
turbulence in the direction of rotation (and stratification). This phenomenon has been known
as two-dimensionalisation. In the present context, regularising effects of rotation may be readily
appreciated by the fact that fluid particles are deflected away from the paths of optimal acceleration
under the sideways influence of the Coriolis force. Such a force is given by |u|Aû, where A is an
anti-symmetric matrix. Now consider the force term |u|2∇f(x), which, when added to (1), has
similar effects as |u|Aû (in the sense that both are perpendicular to u), albeit relatively stronger
due to its quadratic rather than linear dependence on |u|. The moderator f(x)|u|2 can be seen to
be attributable to the force term |u|2∇f(x). This gives some insight into the pressure term and
the present notion of pressure moderation.

In order to fully exploit P, we divide space into regions of high and low velocity. Similar to Tran
and Yu [29], we consider a partition of R3 in the following manner. For q ≥ 3, let Ω ⊂ R3 be such
that the following conditions hold.

• |u| >

(
c

q2

||u||q/βL3q−γ

||p+ P||2L2 ||u||qα/βL2

)1/(q−2)

, for x ∈ Ω;

• |u| ≤

(
c

q2

||u||q/βL3q−γ

||p+ P||2L2 ||u||qα/βL2

)1/(q−2)

, for x ∈ Ωc = R3 \ Ω.

Here γ > 0 is a parameter (to be determined shortly) and α and β are (two Hölder conjugate
exponents appearing in a Hölder inequality below) given by

α =
2γ

(3q − γ)(3q − 2)
and β =

3q(3q − γ − 2)

(3q − γ)(3q − 2)
.

Hereafter, the above partition is referred to as P for convenience. For q = 3 we set γ = 5. The
bound for |u| in P then becomes (constants omitted)

||u||14/3
L4

||p+ P||2L2 ||u||5/3L2

≥
||u||14/3

L4

c ||u||4L4 ||u||5/3L2

=
||u||2/3L4

c ||u||5/3L2

≥
||u||L3

c ||u||2L2

.

Hence Ω consists of regions with velocity of order ||u||L3 . Meanwhile, for q ≥ 4 we set γ = 6. The
bound for |u| in P then becomes (again constants omitted)(

||u||(q−2)(3q−2)/(3q−8)
L3q−6

||p+ P||2L2 ||u||4/(3q−8)
L2

)1/(q−2)

≥

(
||u||(q−2)(3q−2)/(3q−8)

L3q−6

c ||u||4L4 ||u||4/(3q−8)
L2

)1/(q−2)

≥
||u||L3q−6(

c ||u||2L2

)1/(q−2)
.
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This ensures that Ω consists of regions with velocity of order ||u||L3q−6 . Note that in the limit
q →∞, the bound in P tends to ||u||L∞ .

Remark 8. The assumption ||p+ P||L2 ≤ c ||u||2L4 is necessary for the case q = 3 to ensure that
Ω consists of regions with velocity in the order of ||u||L3 . When q ≥ 4, this assumption means Ω
consists of regions with velocity in the order of ||u||L3q−6 . It follows that if we just require the velocity
in Ω to be in the order of ||u||Lq , then the requirement on ||p+ P||L2 can be a bit more relaxing.

It can be seen that P is designed in such a way that the contribution from the region Ωc to the
pressure term in (33) can be cancelled out by the dissipation terms. Hence the contribution from
Ω is solely responsible for growth of ||u||Lq . Indeed, we have∫

Ωc
(p+ P)|u|q−2 û · ∇|u|dx ≤

(∫
Ωc

(p+ P)2|u|q−2 dx

)1/2 ∣∣∣∣∣∣|u|(q−2)/2∇|u|
∣∣∣∣∣∣
L2

≤ c

q

||u||q/(2β)
L3q−γ

||u||qα/(2β)
L2

∣∣∣∣∣∣|u|(q−2)/2∇|u|
∣∣∣∣∣∣
L2

≤ c

q
||u||q/2L3q

∣∣∣∣∣∣|u|(q−2)/2∇|u|
∣∣∣∣∣∣
L2

≤ c
∣∣∣∣∣∣|u|(q−2)/2∇|u|

∣∣∣∣∣∣2
L2
, (34)

where the Hölder inequality

||u||L3q−γ ≤ ||u||αL2 ||u||βL3q

and (7) have been used. Substituting (34) into (33) yields

||u||q−1
Lq

d

dt
||u||Lq ≤ (q − 2)

∫
Ω

(p+ P)|u|q−2 û · ∇|u|dx− c(q − 2)
∣∣∣∣∣∣|u|(q−2)/2∇|u|

∣∣∣∣∣∣2
L2

−
∣∣∣∣∣∣|u|(q−2)/2∇u

∣∣∣∣∣∣2
L2
. (35)

The integral over Ω (by itself or in conjunction with the dissipation terms) is susceptible of several
different estimates, the relative optimality of which is not known a priori. In what follows, we
consider two estimates, each with a reasonable “weight” on the effective pressure, banking on the
possibility that this pressure can be made moderate in Ω.

The case q = 3 admits a special estimate, which deserves separate attention. Otherwise, we
handle all cases q ≥ 3 together. For q = 3, equation (35) becomes

||u||2L3

d

dt
||u||L3 ≤

∫
Ω

(p+ P)|u| û · ∇|u|dx− c
∣∣∣∣∣∣|u|1/2∇|u|∣∣∣∣∣∣2

L2
−
∣∣∣∣∣∣|u|1/2∇u∣∣∣∣∣∣2

L2

≤
(∫

Ω

(p+ P)4 dx

)1/4

||u||1/2L2

∣∣∣∣∣∣|u|1/2∇|u|∣∣∣∣∣∣
L2

−c
∣∣∣∣∣∣|u|1/2∇|u|∣∣∣∣∣∣2

L2
−
∣∣∣∣∣∣|u|1/2∇u∣∣∣∣∣∣2

L2
, (36)

where Hölder’s inequality has been used. If the right-hand side of (36) is negative then ||u||L3 decays
and we have the following theorem.
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Theorem 4. Let u and p solve the Navier–Stokes equations (1). If∫
Ω

(p+ P)4 dx ≤ c
∣∣∣∣∣∣|u|1/2∇u∣∣∣∣∣∣4

L2
, (37)

where Ω is defined by partition P and P is described by lemma 1, then ||u||L3 decays and regularity
follows.

Remark 9. The criterion in theorem 4 can be stated in the form∫ t

0

(∫
Ω

(p+ P)4 dx

)1/2

dτ ≤ c
∫ t

0

∣∣∣∣∣∣|u|1/2∇u∣∣∣∣∣∣2
L2

dτ.

We now consider q ≥ 3, with an emphasis on the limit of large q. This limit is appealing since
Ω reduces in size, to a point if |u| peaks at a single point. Intuitively, p will be easier to moderate
in this limit. The price is the magnitude of q, which appears in the results. This turns out to be
an issue unresolved in the present study. A similar issue involving the limit q →∞ is discussed in
some detail in Ref. [29].

From (35) we have

||u||q−1
Lq

d

dt
||u||Lq ≤ (q − 2)

(∫
Ω

|p+ P|3

|u|3
dx

)1/3

||u||q/2L3q

∣∣∣∣∣∣|u|(q−2)/2∇u
∣∣∣∣∣∣
L2

−c(q − 2)
∣∣∣∣∣∣|u|(q−2)/2∇|u|

∣∣∣∣∣∣2
L2
−
∣∣∣∣∣∣|u|(q−2)/2∇u

∣∣∣∣∣∣2
L2

≤ c′q(q − 2)

(∫
Ω

|p+ P|3

|u|3
dx

)1/3 ∣∣∣∣∣∣|u|(q−2)/2∇u
∣∣∣∣∣∣2
L2

−c(q − 2)
∣∣∣∣∣∣|u|(q−2)/2∇|u|

∣∣∣∣∣∣2
L2
−
∣∣∣∣∣∣|u|(q−2)/2∇u

∣∣∣∣∣∣2
L2
, (38)

where Hölder’s inequality and (7) have been used. This result immediately implies the following
theorem.

Theorem 5. Let u and p solve the Navier–Stokes equations (1). There is c > 0 such that if∫
Ω

|q(p+ P)|3

|u|3
dx ≤ c, (39)

where Ω is defined by partition P and P is given by lemma 1, then ||u||Lq decays and regularity
follows.

In the limit q → ∞, Ω reduces to the point(s) of peak |u|. Hence, its measure, say |Ω|, tends
to zero. An obvious moderation scheme is such that p → −P, i.e. p + P → 0 toward peak |u|.
Regularity requires this approach and |Ω| → 0 to be rapid enough, so that the integral in (39) tends
to zero. Now, consider a finite q ≥ 3. In the limit ||u||Lq → ∞, we also have |Ω| → 0. It follows

that if |p+ P| ≈ |u|5/3 in Ω, then∫
Ω

|p+ P|3

|u|3
dx ≈

∫
Ω

|u|2 dx→ 0.

Therefore, equation (39) holds and regularity is secured. In other words, a moderation scheme that
brings |p| from, presumably, |u|2 down to |u|5/3 is required. It is possible to reformulate theorem
5 in such a way that criterion (39) becomes a Prodi–Serrin type. This has been presented in [30],
where we essentially obtain a localized condition for esssup(0,t) ||p||L3/2 .
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The preceding result has made use of estimates that decouple all factors in the pressure term. In
what follows, we keep p+P and û · ∇|u| together, for the reason to become obvious shortly. Thus,
instead of (38) we have

||u||q−1
Lq

d

dt
||u||Lq ≤ (q − 2)

∫
Ω

p+ P
|u|2

|u|q û · ∇|u|dx

−c(q − 2)
∣∣∣∣∣∣|u|(q−2)/2∇|u|

∣∣∣∣∣∣2
L2
−
∣∣∣∣∣∣|u|(q−2)/2∇u

∣∣∣∣∣∣2
L2

≤ (q − 2)

(∫
Ω

∣∣∣∣p+ P
|u|2

û · ∇|u|
∣∣∣∣3/2 dx

)2/3

||u||qL3q

−c(q − 2)
∣∣∣∣∣∣|u|(q−2)/2∇|u|

∣∣∣∣∣∣2
L2
−
∣∣∣∣∣∣|u|(q−2)/2∇u

∣∣∣∣∣∣2
L2

≤ c′q2(q − 2)

(∫
Ω

∣∣∣∣p+ P
|u|2

û · ∇|u|
∣∣∣∣3/2 dx

)2/3 ∣∣∣∣∣∣|u|(q−2)/2∇|u|
∣∣∣∣∣∣2
L2

−c(q − 2)
∣∣∣∣∣∣|u|(q−2)/2∇|u|

∣∣∣∣∣∣2
L2
−
∣∣∣∣∣∣|u|(q−2)/2∇u

∣∣∣∣∣∣2
L2
, (40)

where Hölder’s inequality and (7) have been used. This result immediately implies the following
theorem.

Theorem 6. Let u and p solve the Navier–Stokes equations (1). There is c > 0 such that if∫
Ω

∣∣∣∣q2 p+ P
|u|2

û · ∇|u|
∣∣∣∣3/2 dx ≤ c, (41)

where Ω is defined by partition P and P is given by lemma 1, then ||u||Lq decays and regularity
follows.

In the limit q → ∞, we have û · ∇|u| → 0 and |Ω| → 0. As in the preceding case, we seek an
admissible P such that p+P → 0 toward peak |u|. We then have both p+P → 0 and û ·∇|u| → 0,
together with |Ω| → 0, against q → ∞. Now, consider a finite q ≥ 3 and the limit ||u||Lq → ∞.

Suppose that there exists a moderation scheme that results in |(p+P) û ·∇|u|| ≈ |u|10/3 in Ω. Then∫
Ω

∣∣∣∣p+ P
|u|2

û · ∇|u|
∣∣∣∣3/2 dx ≈

∫
Ω

|u|2 dx→ 0.

Therefore, equation (41) holds and regularity is secured. Note that in this case, the above scheme
that p + P vanishes toward peak |u| may still work, although the focus of the present moderation
is “off peak” rather than “on peak” velocity.

Finally, we modify the calculations leading to theorems 2 and 3 with a pressure moderator. By
combining (22) with (35), we obtain

d

dt

(
||u||4L4 + 2 ||ω||2L2

)
≤ 8

∫
Ω

(p+ P)|u|2 û · ∇|u|dx− 8c |||u|∇|u|||2 − 3 ||∆u||2L2

≤ c

∫
Ω

(p+ P)2|u|2 dx− ||∆u||2L2 , (42)

where Young’s inequality has been used. This immediately gives the following theorem
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Theorem 7. Let u and p solve the Navier–Stokes equations (1). If∫
Ω

(p+ P)2|u|2 dx ≤ c ||∆u||2L2 , (43)

where Ω is defined by partition P and P is described by lemma 1, then either ||u||L4 or ||ω||L2 (or
both) decays and regularity follows.

Remark 10. The criterion in theorem 7 can be stated in the time-average sense.

We conclude this study with some remarks on a possible pressure moderation scheme. Note
that an alternative notion of pressure moderation is that of pressure approximation in terms of a
moderator fg. Intuitively, detailed knowledge of the relation between p and |u| within Ω is crucial
for the approximation process. In general, available information on such relation is provided by (2),
(3), (4) and (5), where equation (2) can also be expressed in the form

∆

(
p+
|u|2

2

)
= ∇ · (u× ω). (44)

Ideally, if the Poission equation (44) can be solved and its solution can be approximated in terms
of fg, then we have a moderator. In unfavourable circumstances, the following scheme merits some
thoughts and further investigation.

For simplicity we consider the simple moderator f(x)|u|2 and assume that |u| peaks at a single
point x0. Consider a simple surface S (a plane for example) passing through x0. For each x ∈ S∩Ω,
let `x be the portion of the streamline passing through x and contained within Ω. Now for y ∈ `x,
we define

f(y) = −
∫
`x
p(y) d`∫

`x
|u(y)|2 d`

.

It follows that

p(x) + f(x)|u(x)|2 = 0,

for x on a surface in Ω. Note that since f(x) is constant on `x, we have u · ∇f(x) = 0 as required.
This makes P = f(x)|u|2 a plausible moderator.

5. Concluding remarks

For Navier–Stokes flows evolving from sufficiently regular initial velocity fields, the criterion
||u||L3 <∞ unambiguously implies that no loss of regularity occurs if u remains in L3. This study
aims to understand the question of whether or not the pressure force is capable of “driving” a
sufficiently regular velocity field u out of L3. An almost negative answer has been deduced on
the basis of semi-analytic arguments. An effective pressure has been introduced via an additive
moderator to replace the genuine pressure in the term that drives the dynamics of ||u||Lq , for
q ≥ 3. This approach allows one to vary the moderator within its admissible classes in the search
for optimal bounds for that driving term. New regularity criteria have been derived by standard
energy method with and without pressure moderation. In the absence of the moderator, some
slight improvement on existing results has been achieved by considering the evolution of the hybrid
quantity ||u||4L4 + 2 ||ω||2L2 . This essentially allows us to estimate the vortex stretching term in the
evolution equation for ||ω||L2 as a quadratic rather than a cubic, thereby making the improvement
possible. Several new criteria have been derived in terms of the effective pressure. A simple



14 CHUONG V. TRAN AND XINWEI YU

moderator has been considered. The results appear promising, pending theoretical establishment
of an effective moderation scheme.

Acknowledgments. This paper was presented at the 3rd Scottish PDE Colloquium (Strathclyde)
under the title “A physicist’s approach to Navier–Stokes regularity.”
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