261 research outputs found
Polar optical phonons in core-shell semiconductor nanowires
We obtain the the long-wavelength polar optical vibrational modes of
semiconductor core-shell nanowires by means of a phenomenological continuum
model. A basis for the space of solutions is derived, and by applying the
appropriate boundary conditions, the transcendental equations for the coupled
and uncoupled modes are attained. Our results are applied to the study of the
GaAs-GaP core-shell nanowire, for which we calculate numerically the polar
optical modes, analyzing the role of strain in the vibrational properties of
this nanosystem
Interface optical phonons in spheroidal dots: Raman selection rules
The contribution of interface phonons to the first order Raman scattering in
nanocrystals with non spherical geometry is analyzed. Interface optical phonons
in the spheroidal geometry are discussed and the corresponding Frohlich-like
electron-phonon interaction is reported in the framework of the dielectric
continuum approach. It is shown that the interface phonon modes are strongly
dependent on the nanocrystal geometry, particularly on the ellipsoid's
semi-axis ratio. The new Raman selection rules have revealed that solely
interface phonon modes with even angular momentum are allowed to contribute to
the first order phonon-assisted scattering of light. On this basis we are able
to give an explanation for the observed low frequency shoulders present in the
Raman cross-section of several II-VI semiconductor nanostructures.Comment: 8 pages, 2 figure
Resonant hyper-Raman scattering in spherical quantum dots
A theoretical model of resonant hyper-Raman scattering by an ensemble of
spherical semiconductor quantum dots has been developed. The electronic
intermediate states are described as Wannier-Mott excitons in the framework of
the envelope function approximation. The optical polar vibrational modes of the
nanocrystallites (vibrons) and their interaction with the electronic system are
analized with the help of a continuum model satisfying both the mechanical and
electrostatic matching conditions at the interface. An explicit expression for
the hyper-Raman scattering efficiency is derived, which is valid for incident
two-photon energy close to the exciton resonances. The dipole selection rules
for optical transitions and Fr\"ohlich-like exciton-lattice interaction are
derived: It is shown that only exciton states with total angular momentum
and vibrational modes with angular momentum contribute to the
hyper-Raman scattering process. The associated exciton energies, wavefunctions,
and vibron frequencies have been obtained for spherical CdSe zincblende-type
nanocrystals, and the corresponding hyper-Raman scattering spectrum and
resonance profile are calculated. Their dependence on the dot radius and the
influence of the size distribution on them are also discussed.Comment: 12 pages REVTeX (two columns), 2 tables, 8 figure
New magneto-polaron resonances in a monolayer of a transition metal dichalcogenide
Transition metal dichalcogenide (TMD) semiconductors are two-dimensional materials with great potential for the future of nano-optics and nano-optoelectronics as well as the rich and exciting development of basic research. The influence of an external magnetic field on a TMD monolayer raises a new question: to unveil the behavior of the magneto-polaron resonances (MPRs) associated with the phonon symmetry inherent in the system. It is shown that the renormalized Landau energy levels are modified by the interplay of the long-range PekarâFröhlich (PF) and short-range deformation potential (DP) interactions. This leads to a new series of MPRs involving the optical phonons at the center of the Brillouin zone. The coupling of the two Landau levels with the LO and A1 optical phonon modes provokes resonant splittings of double avoided-crossing levels giving rise to three excitation branches. This effect appears as bigger energy gaps at the anticrossing points in the renormalized Landau levels. To explore the interplay between the MPRs, the electron-phonon interactions (PF and DP) and the couplings between adjacent Landau levels, a full Greenâs function treatment for the evaluation of the energy and its life-time broadening is developed. A generalization of the two-level approach is performed for the description of the new MPR branches. The obtained results are a guideline for the magneto-optical experiments in TMDs, where three MPR peaks should be observable
Bose-Einstein condensation in an optical lattice: A perturbation approach
We derive closed analytical expressions for the order parameter
and for the chemical potential of a Bose-Einstein Condensate loaded into
a harmonically confined, one dimensional optical lattice, for sufficiently
weak, repulsive or attractive interaction, and not too strong laser
intensities. Our results are compared with exact numerical calculations in
order to map out the range of validity of the perturbative analytical approach.
We identify parameter values where the optical lattice compensates the
interaction-induced nonlinearity, such that the condensate ground state
coincides with a simple, single particle harmonic oscillator wave function
Fluoroquinolone Resistance in Penicillin-resistant Streptococcus pneumoniae Clones, Spain
Of 75 clones isolated, 1 had ciprofloxacin efflux, and 74 had mutations at the DNA topoisomerase gene
- âŠ