239 research outputs found
A possible observational bias in the estimation of the virial parameter in virialized clumps
The dynamics of massive clumps, the environment where massive stars
originate, is still unclear. Many theories predict that these regions are in a
state of near-virial equilibrium, or near energy equi-partition, while others
predict that clumps are in a sub-virial state. Observationally, the majority of
the massive clumps are in a sub-virial state with a clear anti-correlation
between the virial parameter and the mass of the clumps ,
which suggests that the more massive objects are also the more gravitationally
bound. Although this trend is observed at all scales, from massive clouds down
to star-forming cores, theories do not predict it. In this work we show how,
starting from virialized clumps, an observational bias is introduced in the
specific case where the kinetic and the gravitational energies are estimated in
different volumes within clumps and how it can contribute to the spurious
anti-correlation in these data. As a result, the observed
effective virial parameter , and in some
circumstances it might not be representative of the virial state of the
observed clumps.Comment: A&A letter, accepte
The initial conditions of stellar protocluster formation. II. A catalogue of starless and protostellar clumps embedded in IRDCs in the Galactic longitude range 15<l<55
We present a catalogue of starless and protostellar clumps associated with
infrared dark clouds (IRDCs) in a 40 degrees wide region of the inner Galactic
Plane (b<1). We have extracted the far-infrared (FIR) counterparts of 3493
IRDCs with known distance in the Galactic longitude range 15<l<55 and searched
for the young clumps using Hi-GAL, the survey of the Galactic Plane carried out
with the Herschel satellite. Each clump is identified as a compact source
detected at 160, 250 and 350 mum. The clumps have been classified as
protostellar or starless, based on their emission (or lack of emission) at 70
mum. We identify 1723 clumps, 1056 (61%) of which are protostellar and 667
(39%) starless. These clumps are found within 764 different IRDCs, 375 (49%) of
which are only associated with protostellar clumps, 178 (23%) only with
starless clumps, and 211 (28%) with both categories of clumps. The clumps have
a median mass of 250 M_sun and range up to >10^4$ M_sun in mass and up to 10^5
L_sun in luminosity. The mass-radius distribution shows that almost 30% of the
starless clumps identified in this survey could form high-mass stars, however
these massive clumps are confined in only ~4% of the IRDCs. Assuming a minimum
mass surface density threshold for the formation of high-mass stars, the
comparison of the numbers of massive starless clumps and those already
containing embedded sources suggests an upper limit lifetime for the starless
phase of 10^5 years for clumps with a mass M>500 M_sun.Comment: accepted for publication in MNRAS. Online catalogues available soon,
please contact the authors if intereste
Massive 70 micron quiet clumps I: evidence of embedded low/intermediate-mass star formation activity
Massive clumps, prior to the formation of any visible protostars, are the
best candidates to search for the elusive massive starless cores. In this work
we investigate the dust and gas properties of massive clumps selected to be 70
micron quiet, therefore good starless candidates. Our sample of 18 clumps has
masses 300 < M < 3000 M_sun, radius 0.54 < R < 1.00 pc, surface densities Sigma
> 0.05 g cm^-2 and luminosity/mass ratio L/M < 0.3. We show that half of these
70 micron quiet clumps embed faint 24 micron sources. Comparison with GLIMPSE
counterparts shows that 5 clumps embed young stars of intermediate stellar mass
up to ~5.5 M_sun. We study the clump dynamics with observations of N2H+ (1-0),
HNC (1-0) and HCO+ (1-0) made with the IRAM 30m telescope. Seven clumps have
blue-shifted spectra compatible with infall signatures, for which we estimate a
mass accretion rate 0.04 < M_dot < 2.0 x 10^-3 M_sun yr^-1, comparable with
values found in high-mass protostellar regions, and free-fall time of the order
of t_ff = 3 x 10^5 yr. The only appreciable difference we find between objects
with and without embedded 24 micron sources is that the infall rate appears to
increase from 24 micron dark to 24 micron bright objects. We conclude that all
70 micron quiet objects have similar properties on clump scales, independently
of the presence of an embedded protostar. Based on our data we speculate that
the majority, if not all of these clumps may already embed faint, low-mass
protostellar cores. If these clumps are to form massive stars, this must occur
after the formation of these lower mass stars.Comment: 44 pages, 11 Figures. Accepted for publication in MNRA
Tightening the belt: Constraining the mass and evolution in SDC335
Recent ALMA observations identified one of the most massive star-forming
cores yet observed in the Milky Way; SDC335-MM1, within the infrared dark cloud
SDC335.579-0.292. Along with an accompanying core MM2, SDC335 appears to be in
the early stages of its star formation process. In this paper we aim to
constrain the properties of the stars forming within these two massive
millimetre sources. Observations of SDC335 at 6, 8, 23 and 25GHz were made with
the ATCA. We report the results of these continuum measurements, which combined
with archival data, allow us to build and analyse the spectral energy
distributions (SEDs) of the compact sources in SDC335. Three HCHII regions
within SDC335 are identified, two within the MM1 core. For each HCHII region, a
free-free emission curve is fit to the data allowing the derivation of the
sources' emission measure, ionising photon flux and electron density. Using
these physical properties we assign each HCHII region a ZAMS spectral type,
finding two protostars with characteristics of spectral type B1.5 and one with
a lower limit of B1-B1.5. Ancillary data from infrared to mm wavelength are
used to construct free-free component subtracted SEDs for the mm-cores,
allowing calculation of the bolometric luminosities and revision of the
previous gas mass estimates. The measured luminosities for the two mm-cores are
lower than expected from accreting sources displaying characteristics of the
ZAMS spectral type assigned to them. The protostars are still actively
accreting, suggesting that a mechanism is limiting the accretion luminosity, we
present the case for two different mechanisms capable of causing this. Finally,
using the ZAMS mass values as lower limit constraints, a final stellar
population for SDC335 was synthesised finding SDC335 is likely to be in the
process of forming a stellar cluster comparable to the Trapezium Cluster and
NGC6334 I(N).Comment: 10 pages, 5 figures. Accepted for publication in A&
Deuteration in infrared dark clouds
Much of the dense gas in molecular clouds has a filamentary structure but the detailed structure and evolution of this gas is poorly known. We have observed 54 cores in infrared dark clouds (IRDCs) using N2H+ (1−0) and (3−2) to determine the kinematics of the densest material, where stars will form. We also observed N2D+ (3−2) towards 29 of the brightest peaks to analyse the level of deuteration which is an excellent probe of the quiescent of the early stages of star formation. There were 13 detections of N2D+ (3−2). This is one of the largest samples of IRDCs yet observed in these species. The deuteration ratio in these sources ranges between 0.003 and 0.14. For most of the sources the material traced by N2D+ and N2H+ (3−2) still has significant turbulent motions, however three objects show subthermal N2D+ velocity dispersion. Surprisingly the presence or absence of an embedded 70μm source shows no correlation with the detection of N2D+ (3−2), nor does it correlate with any change in velocity dispersion or excitation temperature. Comparison with recent models of deuteration suggest evolutionary time-scales of these regions of several free-fall times or less
The initial conditions for stellar protocluster formation
Context. Galactic plane surveys of pristine molecular clouds are key for establishing a Galactic-scale view of star formation. For this reason, an unbiased sample of infrared dark clouds in the 10◦ < |l| < 65◦, |b| < 1◦ region of the Galactic plane was built using Spitzer 8 µm extinction. However, intrinsic fluctuations in the mid-infrared background can be misinterpreted as foreground clouds.
Aims. The main goal of this study is to disentangle real clouds in the Spitzer Dark Cloud (SDC) catalogue from artefacts due to fluctuations in the mid-infrared background.
Methods. We constructed H2 column density maps at ∼1811 resolution using the 160 µm and 250 µm data from the Herschel Galactic plane survey Hi-GAL. We also developed an automated detection scheme that confirms the existence of a SDC through its association
with a peak on these Herschel column density maps. Detection simulations, along with visual inspection of a small sub-sample of SDCs, have been performed to get more insight into the limitations of our automated identification scheme.
Results. Our analysis shows that 76(±19)% of the catalogued SDCs are real. This fraction drops to 55(±12)% for clouds with angular diameters larger than ∼1 arcmin. The contamination of the PF09 catalogue by large spurious sources reflects the large uncertainties associated to the construction of the 8 µm background emission, a key stage in identiying SDCs. A comparison of the Herschel
confirmed SDC sample with the BGPS and ATLASGAL samples shows that SDCs probe a unique range of cloud properties, reaching down to more compact and lower column density clouds than any of these two (sub-)millimetre Galactic plane surveys.
Conclusions. Even though about half of the large SDCs are spurious sources, the vast majority of the catalogued SDCs do have a Herschel counterpart. The Herschel-confirmed sample of SDCs offers a unique opportunity to study the earliest stages of both low- and high-mass star formation across the Galaxy
Multi-scale dynamics in star-forming regions: the interplay between gravity and turbulence
In the multi-scale view of the star formation process the material flows from
large molecular clouds down to clumps and cores. In this paradigm it is still
unclear if it is gravity or turbulence that drives the observed supersonic
non-thermal motions during the collapse, in particular in high-mass regions,
and at which scales gravity becomes eventually dominant over the turbulence of
the interstellar medium. To investigate this problem we have combined the
dynamics of a sample of 70 micron-quiet clumps, selected to cover a wide range
of masses and surface densities, with the dynamics of the parent filaments in
which they are embedded. We observe a continuous interplay between turbulence
and gravity, where the former creates structures at all scales and the latter
takes the lead when a critical value of the surface density is reached,
Sigma_th = 0.1 g cm^-2. In the densest filaments this transition can occur at
the parsec, or even larger scales, leading to a global collapse of the whole
region and most likely to the formation of the massive objects.Comment: Proceedings of the "Multi-line Diagnostics of the Interstellar
Medium" IRAM conference, Nice, Franc
Testing Larson's relationships in massive clumps
We tested the validity of the three Larson relations in a sample of 213
massive clumps selected from the Herschel Hi-GAL survey and combined with data
from the MALT90 survey of 3mm emission lines. The clumps have been divided in 5
evolutionary stages to discuss the Larson relations also as function of
evolution. We show that this ensemble does not follow the three Larson
relations, regardless of clump evolutionary phase. A consequence of this
breakdown is that the virial parameter dependence with mass (and
radius) is only a function of the gravitational energy, independent of the
kinetic energy of the system, and is not a good descriptor of
clump dynamics. Our results suggest that clumps with clear signatures of infall
motions are statistically indistinguishable from clumps with no such
signatures. The observed non-thermal motions are not necessarily ascribed to
turbulence acting to sustain the gravity, but they may be due to the
gravitational collapse at the clump scales. This seems particularly true for
the most massive (M1000 M) clumps in the sample, where also
exceptionally high magnetic fields may not be enough to stabilize the collapse.Comment: Accepted for publication in MNRA
Characterizing the structure of diffuse emission in Hi-GAL maps
We present a study of the structure of the Galactic interstellar medium
through the Delta-variance technique, related to the power spectrum and the
fractal properties of infrared/sub-mm maps. Through this method, it is possible
to provide quantitative parameters which are useful to characterize different
morphological and physical conditions, and to better constrain the theoretical
models. In this respect, the Herschel Infrared Galactic Plane Survey carried
out at five photometric bands from 70 to 500 \mu m constitutes an unique
database for applying statistical tools to a variety of regions across the
Milky Way. In this paper, we derive a robust estimate of the power-law portion
of the power spectrum of four contiguous 2{\deg}x2{\deg} Hi-GAL tiles located
in the third Galactic quadrant (217{\deg} < l < 225{\deg}, -2{\deg} < b <
0{\deg}). The low level of confusion along the line of sight testified by CO
observations makes this region an ideal case. We find very different values of
the power spectrum slope from tile to tile but also from wavelength to
wavelength (2 < \beta < 3), with similarities between fields attributable to
components located at the same distance. Thanks to the comparison with models
of turbulence, an explanation of the determined slopes in terms of the fractal
geometry is also provided, and possible relations with the underlying physics
are investigated. In particular, an anti-correlation between ISM fractal
dimension and star formation efficiency is found for the two main distance
components observed in these fields. A possible link between the fractal
properties of the diffuse emission and the resulting clump mass function is
discussed.Comment: Accepted by Ap
Thermal balance and comparison of gas and dust properties of dense clumps in the Hi-GAL survey
We present a comparative study of physical properties derived from gas and dust emission in a sample of 1068 dense Galactic clumps. The sources are selected from the cross-match of the Herschel Infrared Galactic Plane Survey with 16 catalogues of NH3 line emission in its lowest inversion (1,1) and (2,2) transitions. The sample covers a large range in masses and bolometric luminosities, with surface densities above Sigma = 0.1 g cm(-2) and with low virial parameters alpha < 1. The comparison between dust and gas properties shows an overall agreement between T-kin and T-dust at volumetric densities n greater than or similar to 1.2 x 10(4)cm(-3), and a median fractional abundance chi (NH3) = 1.46 x 10(-8). While the protostellar clumps in the sample have small differences between T-kin and T-dust, prestellar clumps have a median ratio T-kin/T-dust = 1.24, suggesting that these sources are thermally decoupled. A correlation is found between the evolutionary tracer L/M and the parameters T-kin/T-dust and chi(NH3) in prestellar sources and protostellar clumps with L/M < 1 L circle dot M circle dot-1 . In addition, a weak correlation is found between non-thermal velocity dispersion and the L/M parameter, possibly indicating an increase of turbulence with protostellar evolution in the interior of clumps. Finally, different processes are discussed to explain the differences between gas and dust temperatures in prestellar candidates, and the origin of non-thermal motions observed in the clumps.Sao Paulo Research Foundation (FAPESP) [2017/23708-0]; Italian Ministero dell'Istruzione Universita e Ricerca through the grant Progetti Premiali 2012-iALMA [CUP C52I13000140001]; European Union [607380]This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
- …