84 research outputs found

    SNP analysis of the inter-alpha-trypsin inhibitor family heavy chain-related protein (IHRP) gene by a fluorescence-adapted SSCP method

    Get PDF
    BACKGROUND: Single-nucleotide polymorphisms (SNPs) are considered to be useful polymorphic markers for genetic studies of polygenic traits. Single-stranded conformational polymorphism (SSCP) analysis has been widely applied to detect SNPs, including point mutations in cancer and congenital diseases. In this study, we describe an application of the fluorescent labeling of PCR fragments using a fluorescent-adapted primer for SSCP analysis as a novel method. METHODS: Single-nucleotide polymorphisms (SNPs) of the inter-alpha-trypsin inhibitor family heavy chain-related protein (IHRP) gene were analyzed using a fluorescence-adapted SSCP method. The method was constructed from two procedures: 1) a fluorescent labeling reaction of PCR fragments using fluorescence-adapted primers in a single tube, and 2) electrophoresis on a non-denaturing polyacrylamide gel. RESULTS: This method was more economical and convenient than the single-stranded conformational polymorphism (SSCP) methods previously reported in the detection of the labeled fragments obtained. In this study, eight SNPs of the IHRP gene were detected by the fluorescence-adapted SSCP. One of the SNPs was a new SNP resulting in an amino acid substitution, while the other SNPs have already been reported in the public databases. Six SNPs of the IHRP were associated with two haplotypes. CONCLUSIONS: The fluorescence-adapted SSCP was useful for detecting and genotyping SNPs

    Lack of association between estrogen receptor β dinucleotide repeat polymorphism and autoimmune thyroid diseases in Japanese patients

    Get PDF
    BACKGROUND: The autoimmune thyroid diseases (AITDs), such as Graves' disease (GD) and Hashimoto's thyroiditis (HT), appear to develop as a result of complex interactions between predisposing genes and environmental triggers. Susceptibility to AITDs is conferred by genes in the human leukocyte antigen (HLA) and genes unlinked to HLA, including the CTLA-4 gene. Recently, estrogen receptor (ER) β, located at human chromosome 14q23-24.1, was identifed. We analyzed a dinucleotide (CA)n repeat polymorphism located in the flanking region of ERβ gene in patients with AITDs and in normal subjects. High heterozygosity makes this polymorphism a useful marker in the genetic study of disorders affecting female endocrine systems. We also correlated a ERβ gene microsatellite polymorphism with bone mineral density (BMD) in the distal radius and biochemical markers of bone turnover in patients with GD in remission. RESULTS: Fourteen different alleles were found in 133 patients with GD, 114 patients with HT, and 179 controls subjects. The various alleles were designated as allele(*)1 through allele(*)14 according to the number of the repeats, from 18 to 30. There was no significant difference in the distributions of ERβ alleles between patient groups and controls. Although recent study demonstrated a significant relation between a allele(*)9 in the ERβ gene and BMD in postmenopausal Japanese women, there were no statistically significant interaction between this allele and BMD in the distal radius, nor biochemical markers in patients with GD in remission. CONCLUSIONS: The present results do not support an association between the ERβ microsatellite marker and AITD in the Japanese population. We also suggest that the ERβ microsatellite polymorphism has at most a minor pathogenic importance in predicting the risk of osteoporosis as a complication of GD

    Genetic diversity in the modern horse illustrated from genome-wide SNP data

    Get PDF
    Horses were domesticated from the Eurasian steppes 5,000-6,000 years ago. Since then, the use of horses for transportation, warfare, and agriculture, as well as selection for desired traits and fitness, has resulted in diverse populations distributed across the world, many of which have become or are in the process of becoming formally organized into closed, breeding populations (breeds). This report describes the use of a genome-wide set of autosomal SNPs and 814 horses from 36 breeds to provide the first detailed description of equine breed diversity. F(ST) calculations, parsimony, and distance analysis demonstrated relationships among the breeds that largely reflect geographic origins and known breed histories. Low levels of population divergence were observed between breeds that are relatively early on in the process of breed development, and between those with high levels of within-breed diversity, whether due to large population size, ongoing outcrossing, or large within-breed phenotypic diversity. Populations with low within-breed diversity included those which have experienced population bottlenecks, have been under intense selective pressure, or are closed populations with long breed histories. These results provide new insights into the relationships among and the diversity within breeds of horses. In addition these results will facilitate future genome-wide association studies and investigations into genomic targets of selection

    A High Density SNP Array for the Domestic Horse and Extant Perissodactyla: Utility for Association Mapping, Genetic Diversity, and Phylogeny Studies

    Get PDF
    An equine SNP genotyping array was developed and evaluated on a panel of samples representing 14 domestic horse breeds and 18 evolutionarily related species. More than 54,000 polymorphic SNPs provided an average inter-SNP spacing of ∼43 kb. The mean minor allele frequency across domestic horse breeds was 0.23, and the number of polymorphic SNPs within breeds ranged from 43,287 to 52,085. Genome-wide linkage disequilibrium (LD) in most breeds declined rapidly over the first 50–100 kb and reached background levels within 1–2 Mb. The extent of LD and the level of inbreeding were highest in the Thoroughbred and lowest in the Mongolian and Quarter Horse. Multidimensional scaling (MDS) analyses demonstrated the tight grouping of individuals within most breeds, close proximity of related breeds, and less tight grouping in admixed breeds. The close relationship between the Przewalski's Horse and the domestic horse was demonstrated by pair-wise genetic distance and MDS. Genotyping of other Perissodactyla (zebras, asses, tapirs, and rhinoceros) was variably successful, with call rates and the number of polymorphic loci varying across taxa. Parsimony analysis placed the modern horse as sister taxa to Equus przewalski. The utility of the SNP array in genome-wide association was confirmed by mapping the known recessive chestnut coat color locus (MC1R) and defining a conserved haplotype of ∼750 kb across all breeds. These results demonstrate the high quality of this SNP genotyping resource, its usefulness in diverse genome analyses of the horse, and potential use in related species

    Genetic Diversity in the Modern Horse Illustrated from Genome-Wide SNP Data

    Get PDF
    Horses were domesticated from the Eurasian steppes 5,000–6,000 years ago. Since then, the use of horses for transportation, warfare, and agriculture, as well as selection for desired traits and fitness, has resulted in diverse populations distributed across the world, many of which have become or are in the process of becoming formally organized into closed, breeding populations (breeds). This report describes the use of a genome-wide set of autosomal SNPs and 814 horses from 36 breeds to provide the first detailed description of equine breed diversity. FST calculations, parsimony, and distance analysis demonstrated relationships among the breeds that largely reflect geographic origins and known breed histories. Low levels of population divergence were observed between breeds that are relatively early on in the process of breed development, and between those with high levels of within-breed diversity, whether due to large population size, ongoing outcrossing, or large within-breed phenotypic diversity. Populations with low within-breed diversity included those which have experienced population bottlenecks, have been under intense selective pressure, or are closed populations with long breed histories. These results provide new insights into the relationships among and the diversity within breeds of horses. In addition these results will facilitate future genome-wide association studies and investigations into genomic targets of selection

    Mutations in MITF and PAX3 Cause “Splashed White” and Other White Spotting Phenotypes in Horses

    Get PDF
    During fetal development neural-crest-derived melanoblasts migrate across the entire body surface and differentiate into melanocytes, the pigment-producing cells. Alterations in this precisely regulated process can lead to white spotting patterns. White spotting patterns in horses are a complex trait with a large phenotypic variance ranging from minimal white markings up to completely white horses. The “splashed white” pattern is primarily characterized by an extremely large blaze, often accompanied by extended white markings at the distal limbs and blue eyes. Some, but not all, splashed white horses are deaf. We analyzed a Quarter Horse family segregating for the splashed white coat color. Genome-wide linkage analysis in 31 horses gave a positive LOD score of 1.6 in a region on chromosome 6 containing the PAX3 gene. However, the linkage data were not in agreement with a monogenic inheritance of a single fully penetrant mutation. We sequenced the PAX3 gene and identified a missense mutation in some, but not all, splashed white Quarter Horses. Genome-wide association analysis indicated a potential second signal near MITF. We therefore sequenced the MITF gene and found a 10 bp insertion in the melanocyte-specific promoter. The MITF promoter variant was present in some splashed white Quarter Horses from the studied family, but also in splashed white horses from other horse breeds. Finally, we identified two additional non-synonymous mutations in the MITF gene in unrelated horses with white spotting phenotypes. Thus, several independent mutations in MITF and PAX3 together with known variants in the EDNRB and KIT genes explain a large proportion of horses with the more extreme white spotting phenotypes

    日本サラブレッド馬の競走能力に関する統計遺伝学的および分子遺伝学的研究

    Get PDF
    京都大学0048新制・論文博士博士(農学)乙第12753号論農博第2782号新制||農||1015(附属図書館)学位論文||H25||N4780(農学部図書室)30566昭和大学大学院薬学研究科医療薬学専攻(主査)教授 祝前 博明, 教授 今井 裕, 教授 廣岡 博之学位規則第4条第2項該当Doctor of Agricultural ScienceKyoto UniversityDA

    Short Insertion and Deletion Discoveries via Whole-Genome Sequencing of 101 Thoroughbred Racehorses

    No full text
    Thoroughbreds are some of the most famous racehorses worldwide and are currently animals of high economic value. To understand genomic variability in Thoroughbreds, we identified genome-wide insertions and deletions (INDELs) and obtained their allele frequencies in this study. INDELs were obtained from whole-genome sequencing data of 101 Thoroughbred racehorses by mapping sequence reads to the horse reference genome. By integrating individual data, 1,453,349 and 113,047 INDELs were identified in the autosomal (1–31) and X chromosomes, respectively, while 18 INDELs were identified on the mitochondrial genome, totaling 1,566,414 INDELs. Of those, 779,457 loci (49.8%) were novel INDELs, while 786,957 loci (50.2%) were already registered in Ensembl. The sizes of diallelic INDELs ranged from −286 to +476, and the majority, 717,736 (52.14%) and 220,672 (16.03%), were 1-bp and 2-bp variants, respectively. Numerous INDELs were found to have lower frequencies of alternative (Alt) alleles. Many rare variants with low Alt allele frequencies (<0.5%) were also detected. In addition, 5955 loci were genotyped as having a minor allele frequency of 0.5 and being heterogeneous genotypes in all the horses. While short-read sequencing and its mapping to reference genome is a simple way of detecting variants, fake variants may be detected. Therefore, our data help to identify true variants in Thoroughbred horses. The INDEL database we constructed will provide useful information for genetic studies and industrial applications in Thoroughbred horses, including a gene-editing test for gene-doping control and a parentage test using INDELs for horse registration and identification
    corecore