25 research outputs found

    Exfoliation of single layer BiTeI flakes

    Get PDF
    Spin orbit interaction is strongly enhanced in structures where a heavy element is embedded in an inversion asymmetric crystal field. A simple way for realizing such a setup is to take a single atomic layer of a heavy element and encapsulate it between two atomic layers of different elemental composition. BiTeI is a promising candidate for such a 2D crystal. In its bulk form BiTeI consists of loosely coupled three atom thick layers where a layer of high atomic number Bi are sandwiched between Te and I sheets. Despite considerable recent attention to bulk BiTeI due to its giant Rashba spin splitting, the isolation of a single layer remained elusive. In this work we report the first successful isolation and characterization of a single layer of BiTeI using a novel exfoliation technique on stripped gold. Our scanning probe studies and first principles calculations show that the fabricated 100 mu m sized BiTeI flakes are stable at ambient conditions. Giant Rashba splitting and spin-momentum locking of this new 2D crystal opens the way towards novel spintronic applications and synthetic topological heterostructures

    Limited Tumor Tissue Drug Penetration Contributes to Primary Resistance against Angiogenesis Inhibitors

    Get PDF
    Resistance mechanisms against antiangiogenic drugs are unclear. Here, we correlated the antitumor and antivascular properties of five different antiangiogenic receptor tyrosine kinase inhibitors (RTKIs) (motesanib, pazopanib, sorafenib, sunitinib, vatalanib) with their intratumoral distribution data obtained by matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI). In the first mouse model, only sunitinib exhibited broad-spectrum antivascular and antitumor activities by simultaneously suppressing vascular endothelial growth factor receptor-2 (VEGFR2) and desmin expression, and by increasing intratumoral hypoxia and inhibiting both tumor growth and vascularisation significantly. Importantly, the highest and most homogeneous intratumoral drug concentrations have been found in sunitinib-treated animals. In another animal model, where - in contrast to the first model - vatalanib was detectable at homogeneously high intratumoral concentrations, the drug significantly reduced tumor growth and angiogenesis. In conclusion, the tumor tissue penetration and thus the antiangiogenic and antitumor potential of antiangiogenic RTKIs vary among the tumor models and our study demonstrates the potential of MALDI-MSI to predict the efficacy of unlabelled small molecule antiangiogenic drugs in malignant tissue. Our approach is thus a major technical and preclinical advance demonstrating that primary resistance to angiogenesis inhibitors involves limited tumor tissue drug penetration. We also conclude that MALDI-MSI may significantly contribute to the improvement of antivascular cancer therapies

    Recombinant human erythropoietin α modulates the effects of radiotherapy on colorectal cancer microvessels

    Get PDF
    Recent data suggest that recombinant human erythropoietin (rhEPO) modulates tumour growth and therapy response. The purpose of the present study was to examine the modulation of radiotherapy (RT) effects on tumour microvessels by rhEPO in a rat colorectal cancer model. Before and after 5 × 5 Gy of RT, dynamic contrast-enhanced -magnetic resonance imaging was performed and endothelial permeability surface product (PS), plasma flow (F), and blood volume (V) were modelled. Imaging was combined with pO2 measurements, analysis of microvessel density, microvessel diameter, microvessel fractal dimension, and expression of vascular endothelial growth factor (VEGF), hypoxia-inducible factor-1 α (HIF-1α), Bax, and Bcl-2. We found that RT significantly reduced PS and V in control rats, but not in rhEPO-treated rats, whereas F was unaffected by RT. Oxygenation was significantly better in rhEPO-treated animals, and RT induced a heterogeneous reoxygenation in both groups. Microvessel diameter was significantly larger in rhEPO animals, whereas VEGF expression was significantly lower in the rhEPO group. No differences were observed in HIF-1α, Bax, or Bcl-2 expression. We conclude that rhEPO results in spatially heterogeneous modulation of RT effects on tumour microvessels. Direct effects of rhEPO on neoplastic endothelium are likely to explain these findings in addition to indirect effects induced by increased oxygenation

    Erythropoietin Blockade Inhibits the Induction of Tumor Angiogenesis and Progression

    Get PDF
    BACKGROUND: The induction of tumor angiogenesis, a pathologic process critical for tumor progression, is mediated by multiple regulatory factors released by tumor and host cells. We investigated the role of the hematopoietic cytokine erythropoietin as an angiogenic factor that modulates tumor progression. METHODOLOGY/PRINCIPAL FINDINGS: Fluorescently-labeled rodent mammary carcinoma cells were injected into dorsal skin-fold window chambers in mice, an angiogenesis model that allows direct, non-invasive, serial visualization and real-time assessment of tumor cells and neovascularization simultaneously using intravital microscopy and computerized image analysis during the initial stages of tumorigenesis. Erythropoietin or its antagonist proteins were co-injected with tumor cells into window chambers. In vivo growth of cells engineered to stably express a constitutively active erythropoietin receptor EPOR-R129C or the erythropoietin antagonist R103A-EPO were analyzed in window chambers and in the mammary fat pads of athymic nude mice. Co-injection of erythropoietin with tumor cells or expression of EPOR-R129C in tumor cells significantly stimulated tumor neovascularization and growth in window chambers. Co-injection of erythropoietin antagonist proteins (soluble EPOR or anti-EPO antibody) with tumor cells or stable expression of antagonist R103A-EPO protein secreted from tumor cells inhibited angiogenesis and impaired tumor growth. In orthotopic tumor xenograft studies, EPOR-R129C expression significantly promoted tumor growth associated with increased expression of Ki67 proliferation antigen, enhanced microvessel density, decreased tumor hypoxia, and increased phosphorylation of extracellular-regulated kinases ERK1/2. R103A-EPO antagonist expression in mammary carcinoma cells was associated with near-complete disruption of primary tumor formation in the mammary fat pad. CONCLUSIONS/SIGNIFICANCE: These data indicate that erythropoietin is an important angiogenic factor that regulates the induction of tumor cell-induced neovascularization and growth during the initial stages of tumorigenesis. The suppression of tumor angiogenesis and progression by erythropoietin blockade suggests that erythropoietin may constitute a potential target for the therapeutic modulation of angiogenesis in cancer

    Role of retinoic receptors in lung carcinogenesis

    Get PDF
    Several in vitro and in vivo studies have examined the positive and negative effects of retinoids (vitamin A analogs) in premalignant and malignant lesions. Retinoids have been used as chemopreventive and anticancer agents because of their pleiotropic regulator function in cell differentiation, growth, proliferation and apoptosis through interaction with two types of nuclear receptors: retinoic acid receptors and retinoid X receptors. Recent investigations have gradually elucidated the function of retinoids and their signaling pathways and may explain the failure of earlier chemopreventive studies

    Regulation of DNA Repair Mechanism in Human Glioma Xenograft Cells both In Vitro and In Vivo in Nude Mice

    Get PDF
    Glioblastoma Multiforme (GBM) is the most lethal form of brain tumor. Efficient DNA repair and anti-apoptotic mechanisms are making glioma treatment difficult. Proteases such as MMP9, cathepsin B and urokinase plasminogen activator receptor (uPAR) are over expressed in gliomas and contribute to enhanced cancer cell proliferation. Non-homologous end joining (NHEJ) repair mechanism plays a major role in double strand break (DSB) repair in mammalian cells.Here we show that silencing MMP9 in combination with uPAR/cathepsin B effects NHEJ repair machinery. Expression of DNA PKcs and Ku70/80 at both mRNA and protein levels in MMP9-uPAR (pMU) and MMP9-cathepsin B (pMC) shRNA-treated glioma xenograft cells were reduced. FACS analysis showed an increase in apoptotic peak and proliferation assays revealed a significant reduction in the cell population in pMU- and pMC-treated cells compared to untreated cells. We hypothesized that reduced NHEJ repair led to DSBs accumulation in pMU- and pMC-treated cells, thereby initiating cell death. This hypothesis was confirmed by reduced Ku70/Ku80 protein binding to DSB, increased comet tail length and elevated ÎłH2AX expression in treated cells compared to control. Immunoprecipitation analysis showed that EGFR-mediated lowered DNA PK activity in treated cells compared to controls. Treatment with pMU and pMC shRNA reduced the expression of DNA PKcs and ATM, and elevated ÎłH2AX levels in xenograft implanted nude mice. Glioma cells exposed to hypoxia and irradiation showed DSB accumulation and apoptosis after pMU and pMC treatments compared to respective controls.Our results suggest that pMU and pMC shRNA reduce glioma proliferation by DSB accumulation and increase apoptosis under normoxia, hypoxia and in combination with irradiation. Considering the radio- and chemo-resistant cancers favored by hypoxia, our study provides important therapeutic potential of MMP9, uPAR and cathepsin B shRNA in the treatment of glioma from clinical stand point

    Comparison of GRASS-LiDAR modules–TerraScan with respect to vegetation filtering

    No full text
    The work presents the comparison of results obtained with two different methods for filtering LiDAR data, focusing specifically on ground (bare Earth) and vegetation classification. Data was filtered with TerraScan, a leading proprietary software for processing LiDAR point clouds, and with the specific modules available in GRASS GIS. The LiDAR dataset (1.5 points/m 2 ) was produced with an Optech ALTM Gemini and covers an area of the Sardinia region where there are available also orthophotos and false color infrared images, both with resolution of 20 cm. Concerning TerraScan two classifications were computed: the former is a completely automatic and the latter is a semi-automatic one, with a heavy manual reclassification of the previously obtained automatic results. In GRASS GIS the modules developed by the Geomatic Laboratory of the Politecnico di Milano were applied; parameters to be used by the modules were at first calibrated on specific training sub-areas. The purpose of the work is the evaluation of the accuracy in ground and vegetation extraction. Moreover, since GRASS divides points belonging to vegetation in two classes, corresponding to high and low vegetation, the comparison is done for the latter category. The choice of concentrating on this category is motivated by the greater difficulty in distinguishing between terrain and low vegetation. As “ground truth” the result of the supervised classification performed on the orthophotos and the false color infrared images was used
    corecore