8 research outputs found

    Ultra-high throughput dual channel liquid chromatography with tandem mass spectrometry for quantification of four immunosuppressants in whole blood for therapeutic drug monitoring

    Get PDF
    Liquid chromatography with tandem mass spectrometry (LC-MS/MS) is the golden standard for immunosuppressants analyses, where optimising throughput by parallel chromatography can reduce costs and turnaround time. We aimed to double our system throughput using a dual LC-MS/MS setup. Therefore, two independent UPLC systems were hyphenated to one triple quadrupole MS, with staggered injections from one autosampler on alternating columns. The method simultaneously measured the analytes tacrolimus, sirolimus, everolimus, and cyclosporin A in whole blood using isotope dilution, with a run time of 1.5 min. Using the dual LC-MS/MS system, net run-to-run time improved from 2.3 to 0.98 min per injection, where throughput increased from 26 to 61 injections per hour. For Performance Qualification, 1101 clinical samples were measured on the dual LC-MS/MS system in addition to the standard system, during a period of one month, and the results were compared using Passing Bablok regression and Bland Altman analysis. There was excellent agreement for all four analytes, with regression slopes of 0.98-1.02x and intercepts of -0.11-0.88 µg/L. Minor bias was demonstrated between the systems with mean differences from -0.93 to 1.43%. In conclusion, the throughput was doubled and idle MS time was reduced with good agreement to the standard system. Currently, the method is applied for clinical routine with frequent peak intensities of &gt;180 injections per day.</p

    Degeneration of penicillin production in ethanol-limited chemostat cultivations of Penicillium chrysogenum:A systems biology approach

    Get PDF
    Background: In microbial production of non-catabolic products such as antibiotics a loss of production capacity upon long-term cultivation (for example chemostat), a phenomenon called strain degeneration, is often observed. In this study a systems biology approach, monitoring changes from gene to produced flux, was used to study degeneration of penicillin production in a high producing Penicillium chrysogenum strain during prolonged ethanol-limited chemostat cultivations. Results: During these cultivations, the biomass specific penicillin production rate decreased more than 10-fold in less than 22 generations. No evidence was obtained for a decrease of the copy number of the penicillin gene cluster, nor a significant down regulation of the expression of the penicillin biosynthesis genes. However, a strong down regulation of the biosynthesis pathway of cysteine, one of the precursors of penicillin, was observed. Furthermore the protein levels of the penicillin pathway enzymes L-alpha-(d-aminoadipyl)-L-alpha-cystenyl-D-alpha-valine synthetase (ACVS) and isopenicillin-N synthase (IPNS), decreased significantly. Re-cultivation of fully degenerated cells in unlimited batch culture and subsequent C-limited chemostats did only result in a slight recovery of penicillin production. Conclusions: Our findings indicate that the observed degeneration is attributed to a significant decrease of the levels of the first two enzymes of the penicillin biosynthesis pathway, ACVS and IPNS. This decrease is not caused by genetic instability of the penicillin amplicon, neither by down regulation of the penicillin biosynthesis pathway. Furthermore no indications were obtained for degradation of these enzymes as a result of autophagy. Possible causes for the decreased enzyme levels could be a decrease of the translation efficiency of ACVS and IPNS during degeneration, or the presence of a culture variant impaired in the biosynthesis of functional proteins of these enzymes, which outcompeted the high producing part of the population

    Expeditious quantification of plasma tacrolimus with liquid chromatography tandem mass spectrometry in solid organ transplantation

    Get PDF
    Traditionally, tacrolimus is assessed in whole blood samples, but this is suboptimal from the perspective that erythrocyte-bound tacrolimus is not a good representative of the active fraction. In this work, a straightforward and rapid method was developed for determination of plasma tacrolimus in solid organ transplant recipients, using liquid chromatography tandem mass spectrometry (LC-MS/MS) with heated electrospray ionisation. Sample preparation was performed through protein precipitation of 200 µl plasma with 500 µl stable isotopically labelled tacrolimus I.S. in methanol, where 20 µl was injected on the LC-MS/MS system. Separation was done using a chromatographic gradient on a C18 column (50 × 2.1 mm, 2.6 µm). The method was linear in the concentration range 0.05–5.00 µg/L, with within-run and between-run precision in the range 2–6 % and a run time of 1.5 min. Furthermore, the method was validated for selectivity, sensitivity, carry-over, accuracy and precision, process efficiency, recovery, matrix effect, and stability following EMA and FDA guidelines. Clinical validation was performed in 2333 samples from 1325 solid organ transplant recipients using tacrolimus (liver n = 312, kidney n = 1714, and lung n = 307), which had median plasma tacrolimus trough concentrations of 0.10 µg/L, 0.15 µg/L and 0.23 µg/L, respectively. This method is suitable for measurement of tacrolimus in plasma and will facilitate ongoing observational and prospective studies on the relationship of plasma tacrolimus concentrations with clinical outcomes

    Dried blood spot analysis for therapeutic drug monitoring of Clozapine

    Get PDF
    Background: Schizophrenia is a psychiatric disorder that affects approximately 0.4%–1% of the population worldwide. Diagnosis of schizophrenia is based primarily on Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5) criteria. Clozapine is an antipsychotic drug that is mainly used in the treatment of schizophrenia patients who are refractory or intolerant to at least 2 other antipsychotics. Due to the high variability in pharmacokinetics of clozapine, therapeutic drug monitoring (TDM) is highly recommended for clozapine therapy. Objective: To develop and clinically validate a novel sampling method using dried blood spot (DBS) to support TDM of clozapine and norclozapine. Methods: From June 2014 to September 2014, 15 schizophrenia patients (18–55 years) treated with clozapine were included. Plasma, DBS samples made from venous samples (VDBS), and finger prick DBS (DBS) samples were obtained before administration and 2, 4, 6, and 8 hours after clozapine intake. The study was repeated in 6 Russian patients for external validation. Passing-Bablok regression and Bland-Altman analysis were used to compare the DBS, VDBS, and plasma results for clozapine and norclozapine. Results: The DBS validation results showed good linearity over the concentration time curve measured for clozapine and norclozapine. The accuracy and between- and within-day precision variation values were within accepted ranges. Different blood spot volumes and hematocrit values had no significant influence on the results. The DBS samples were stable at 20°C and 37°C for 2 weeks and at −20°C for 2 years. The mean clozapine and norclozapine DBS/plasma ratios were, respectively, 0.80 (95% CI, 0.76 to 0.85) and 1.063 (95% CI, 1.027 to 1.099) in Dutch patients. The mean clozapine DBS/DPS ratio in Russian patients was 0.70 (95% CI, 0.64 to 0.76). Conclusion: DBS analysis is a reliable tool for blood sampling and performing TDM of clozapine and norclozapine in daily practice and substantially extends the opportunities for TDM of clozapine

    Innovative Therapeutic Potential of Cannabinoid Receptors as Targets in Alzheimer’s Disease and Less Well-Known Diseases

    No full text
    corecore