378 research outputs found

    Nodular lymphocyte predominant hodgkin lymphoma and T cell/histiocyte rich large B cell lymphoma : endpoints of a spectrum of one disease?

    Get PDF
    In contrast to the commonly indolent clinical behavior of nodular lymphocyte predominant Hodgkin lymphoma (NLPHL), T cell/histiocyte rich large B cell lymphoma (THRLBCL) is frequently diagnosed in advanced clinical stages and has a poor prognosis. Besides the different clinical presentations of these lymphoma entities, there are variants of NLPHL with considerable histopathologic overlap compared to THRLBCL. Especially THRLBCL-like NLPHL, a diffuse form of NLPHL, often presents a histopathologic pattern similar to THRLBCL, suggesting a close relationship between both lymphoma entities. To corroborate this hypothesis, we performed gene expression profiling of microdissected tumor cells of NLPHL, THRLBCL-like NLPHL and THRLBCL. In unsupervised analyses, the lymphomas did not cluster according to their entity. Moreover, even in supervised analyses, very few consistently differentially expressed transcripts were found, and for these genes the extent of differential expression was only moderate. Hence, there are no clear and consistent differences in the gene expression of the tumor cells of NLPHL, THRLBCL-like NLPHL and THRLBCL. Based on the gene expression studies, we identified BAT3/BAG6, HIGD1A, and FAT10/UBD as immunohistochemical markers expressed in the tumor cells of all three lymphomas. Characterization of the tumor microenvironment for infiltrating T cells and histiocytes revealed significant differences in the cellular composition between typical NLPHL and THRLBCL cases. However, THRLBCL-like NLPHL presented a histopathologic pattern more related to THRLBCL than NLPHL. In conclusion, NLPHL and THRLBCL may represent a spectrum of the same disease. The different clinical behavior of these lymphomas may be strongly influenced by differences in the lymphoma microenvironment, possibly related to the immune status of the patient at the timepoint of diagnosis

    Case Report: Spontaneous Remission of an Infraorbital Follicular B-Cell Lymphoma: Case Report and Review of the Literature.

    Get PDF
    Non-Hodgkin lymphomas comprise a heterogeneous group of malignancies, with a wide scope of clinical, radiological and histological presentations. In this paper, a case is presented of a 59-year-old white male with an infraorbital follicular B-cell lymphoma, which appeared as a painless mass in the left cheek. The lymphoma achieved spontaneous remission five and a half months after his diagnostic incision biopsy. The literature is reviewed, focusing on this rare site of presentation and spontaneous remission. In literature, only four cases have been reported with a follicular B-cell lymphoma of the cheek or infraorbital region, and only 26 cases of spontaneous remission of an extracranial non-Hodgkin lymphoma in the head and neck region have been described. To the authors' best knowledge, this is the first time spontaneous remission of an infraorbital follicular lymphoma could be observed. The nature of the processes inducing spontaneous remission remains obscure. It is important to recognize this phenomenon as this might prevent unnecessary treatment

    Synthesizing Speech from Intracranial Depth Electrodes using an Encoder-Decoder Framework

    Full text link
    Speech Neuroprostheses have the potential to enable communication for people with dysarthria or anarthria. Recent advances have demonstrated high-quality text decoding and speech synthesis from electrocorticographic grids placed on the cortical surface. Here, we investigate a less invasive measurement modality in three participants, namely stereotactic EEG (sEEG) that provides sparse sampling from multiple brain regions, including subcortical regions. To evaluate whether sEEG can also be used to synthesize high-quality audio from neural recordings, we employ a recurrent encoder-decoder model based on modern deep learning methods. We find that speech can indeed be reconstructed with correlations up to 0.8 from these minimally invasive recordings, despite limited amounts of training data

    Identification of a 3-gene model as a powerful diagnostic tool for the recognition of ALK-negative anaplastic large-cell lymphoma

    Get PDF
    16siAnaplastic large-cell lymphomas (ALCLs) are a group of clinically and biologically heterogeneous diseases including the ALK+ and ALK+ systemic forms. Whereas ALK+ ALCLs are molecularly characterized and can be readily diagnosed, specific immunophenotypic or genetic features to define ALK- ALCL are missing, and their distinction from other T-cell non-Hodgkin lymphomas (T-NHLs) remains controversial. In the present study, we undertook a transcriptional profiling meta-analysis of 309 cases, including ALCL and other primary T-NHL samples. Pathway discovery and prediction analyses defined a minimum set of genes capable of recognizing ALK- ALCL. Application of quantitative RT-PCR in independent datasets from cryopreserved and formalin-fixed paraffin-embedded samples validated a 3-gene model (TNFRSF8, BATF3, and TMOD1) able to successfully separate ALK- ALCL from peripheral T-cell lymphoma not otherwise specified, with overall accuracy near 97%. In conclusion, our data justify the possibility of translating quantitative RT-PCR protocols to routine clinical settings as a new approach to objectively dissect T-NHL and to select more appropriate therapeutic protocols. © 2012 by The American Society of Hematology.openopenAgnelli L.; Mereu E.; Pellegrino E.; Limongi T.; Kwee I.; Bergaggio E.; Ponzoni M.; Zamo A.; Iqbal J.; Piccaluga P.P.; Neri A.; Chan W.C.; Pileri S.; Bertoni F.; Inghirami G.; Piva R.Agnelli, L.; Mereu, E.; Pellegrino, E.; Limongi, T.; Kwee, I.; Bergaggio, E.; Ponzoni, M.; Zamo, A.; Iqbal, J.; Piccaluga, P. P.; Neri, A.; Chan, W. C.; Pileri, S.; Bertoni, F.; Inghirami, G.; Piva, R

    ADAM9 inhibition increases membrane activity of ADAM10 and controls α-secretase processing of amyloid precursor protein

    Get PDF
    Prodomains of A disintegrin and metalloproteinase (ADAM) metallopeptidases can act as highly specific intra- and intermolecular inhibitors of ADAM catalytic activity. The mouse ADAM9 prodomain (proA9; amino acids 24–204), expressed and characterized from Escherichia coli, is a competitive inhibitor of human ADAM9 catalytic/disintegrin domain with an overall inhibition constant of 280 ± 34 nm and high specificity toward ADAM9. In SY5Y neuroblastoma cells overexpressing amyloid precursor protein, proA9 treatment reduces the amount of endogenous ADAM10 enzyme in the medium while increasing membrane-bound ADAM10, as shown both by Western and activity assays with selective fluorescent peptide substrates using proteolytic activity matrix analysis. An increase in membrane-bound ADAM10 generates higher levels of soluble amyloid precursor protein α in the medium, whereas soluble amyloid precursor protein β levels are decreased, demonstrating that inhibition of ADAM9 increases α-secretase activity on the cell membrane. Quantification of physiological ADAM10 substrates by a proteomic approach revealed that substrates, such as epidermal growth factor (EGF), HER2, osteoactivin, and CD40-ligand, are increased in the medium of BT474 breast tumor cells that were incubated with proA9, demonstrating that the regulation of ADAM10 by ADAM9 applies for many ADAM10 substrates. Taken together, our results demonstrate that ADAM10 activity is regulated by inhibition of ADAM9, and this regulation may be used to control shedding of amyloid precursor protein by enhancing α-secretase activity, a key regulatory step in the etiology of Alzheimer disease.National Institutes of Health (U.S.) (Grant R01EB010246)National Institutes of Health (U.S.) (Grant R01GM081336)Heptagon Fund (London, England)Cancer Research UKWhitehead FoundationDuke University. School of Medicine (Bridge Funding Program)Germany. Bundesministerium für Bildung und ForschungChina (National Fellowship from the Chinese Scholarship Council)Florida State Universit

    Biological and Clinical Implications of Gene-Expression Profiling in Diffuse Large B-Cell Lymphoma:A Proposal for a Targeted BLYM-777 Consortium Panel as Part of a Multilayered Analytical Approach

    Get PDF
    Gene-expression profiling (GEP) is used to study the molecular biology of lymphomas. Here, advancing insights from GEP studies in diffuse large B-cell lymphoma (DLBCL) lymphomagenesis are discussed. GEP studies elucidated subtypes based on cell-of-origin principles and profoundly changed the biological understanding of DLBCL with clinical relevance. Studies integrating GEP and next-generation DNA sequencing defined different molecular subtypes of DLBCL entities originating at specific anatomical localizations. With the emergence of high-throughput technologies, the tumor microenvironment (TME) has been recognized as a critical component in DLBCL pathogenesis. TME studies have characterized so-called “lymphoma microenvironments" and “ecotypes”. Despite gained insights, unexplained chemo-refractoriness in DLBCL remains. To further elucidate the complex biology of DLBCL, we propose a novel targeted GEP consortium panel, called BLYM-777. This knowledge-based biology-driven panel includes probes for 777 genes, covering many aspects regarding B-cell lymphomagenesis (f.e., MYC signature, TME, immune surveillance and resistance to CAR T-cell therapy). Regarding lymphomagenesis, upcoming DLBCL studies need to incorporate genomic and transcriptomic approaches with proteomic methods and correlate these multi-omics data with patient characteristics of well-defined and homogeneous cohorts. This multilayered methodology potentially enhances diagnostic classification of DLBCL subtypes, prognostication, and the development of novel targeted therapeutic strategies. Simple Summary: This review summarizes gene-expression profiling insights into the background and origination of diffuse large B-cell lymphomas (DLBCL). To further unravel the molecular biology of these lymphomas, a consortium panel called BLYM-777 was designed including genes important for subtype classifications, genetic pathways, tumor-microenvironment, immune response and resistance to targeted therapies. This review proposes to combine this transcriptomic method with genomics, proteomics, and patient characteristics to facilitate diagnostic classification, prognostication, and the development of new targeted therapeutic strategies in DLBCL

    Cutaneous barrier leakage and gut inflammation drive skin disease in Omenn syndrome

    Get PDF
    Background: Severe early-onset erythroderma and gut inflammation, with massive tissue infiltration of oligoclonal activated T cells are the hallmark of Omenn syndrome (OS). Objective: The impact of altered gut homeostasis in the cutaneous manifestations of OS remains to be clarified. Methods: We analyzed a cohort of 15 patients with OS and the 129Sv/C57BL/6 knock-in Rag2R229Q/R229Q (Rag2R229Q) mouse model. Homing phenotypes of circulating lymphocytes were analyzed by flow cytometry. Inflammatory cytokines and chemokines were examined in the sera by ELISA and in skin biopsies by immunohistochemistry and in situ RNA hybridization. Experimental colitis was induced in mice by dextran sulfate sodium salt. Results: We show that memory/activated T cells from patients with OS and from the Rag2R229Q mouse model of OS abundantly express the skin homing receptors cutaneous lymphocyte associated antigen and CCR4 (Ccr4), associated with high levels of chemokine C-C motif ligands 17 and 22. Serum levels of LPS are also elevated. A broad TH1/TH2/TH17 inflammatory signature is detected in the periphery and in the skin. Increased Tlr4 expression in the skin of Rag2R229Q mice is associated with enhanced cutaneous inflammation on local and systemic administration of LPS. Likewise, boosting colitis in Rag2R229Q mice results in increased frequency of Ccr4+ splenic T cells and worsening of skin inflammation, as indicated by epidermal thickening, enhanced epithelial cell activation, and dermal infiltration by TH1 effector T cells. Conclusions: These results support the existence of an interplay between gut and skin that can sustain skin inflammation in OS
    corecore