27 research outputs found

    A simple derivation of BV bounds for inhomogeneous relaxation systems

    Get PDF
    We consider relaxation systems of transport equations with heterogeneous source terms and with boundary conditions, which limits are scalar conservation laws. Classical bounds fail in this context and in particular BV estimates. They are the most standard and simplest way to prove compactness and convergence. We provide a novel and simple method to obtain partial BV regularity and strong compactness in this framework. The standard notion of entropy is not convenient either and we also indicate another, but closely related, notion. We give two examples motivated by renal flows which consist of 2 by 2 and 3 by 3 relaxation systems with 2-velocities but the method is more general

    Flagella bending affects macroscopic properties of bacterial suspensions

    Full text link
    To survive in harsh conditions, motile bacteria swim in complex environment and respond to the surrounding flow. Here we develop a PDE model describing how the flagella bending affects macroscopic properties of bacterial suspensions. First, we show how the flagella bending contributes to the decrease of the effective viscosity observed in dilute suspension. Our results do not impose tumbling (random re-orientation) as it was done previously to explain the viscosity reduction. Second, we demonstrate a possibility of bacterium escape from the wall entrapment due to the self-induced buckling of flagella. Our results shed light on the role of flexible bacterial flagella in interactions of bacteria with shear flow and walls or obstacles

    A Wasserstein norm for signed measures, with application to nonlocal transport equation with source term

    Get PDF
    We introduce the optimal transportation interpretation of the Kantorovich norm on thespace of signed Radon measures with finite mass, based on a generalized Wasserstein distancefor measures with different masses.With the formulation and the new topological properties we obtain for this norm, we proveexistence and uniqueness for solutions to non-local transport equations with source terms, whenthe initial condition is a signed measure

    Estimating the division rate and kernel in the fragmentation equation

    Get PDF
    International audienceWe consider the fragmentation equation tf(t,x)=B(x)f(t,x)+y=xy=k(y,x)B(y)f(t,y)dy,\dfrac{\partial}{\partial t}f (t, x) = −B(x)f (t, x) + \int_{ y=x}^{ y=\infty} k(y, x)B(y)f (t, y)dy, and address the question of estimating the fragmentation parameters-i.e. the division rate B(x)B(x) and the fragmentation kernel k(y,x)k(y, x)-from measurements of the size distribution f(t,)f (t, ·) at various times. This is a natural question for any application where the sizes of the particles are measured experimentally whereas the fragmentation rates are unknown, see for instance (Xue, Radford, Biophys. Journal, 2013) for amyloid fibril breakage. Under the assumption of a polynomial division rate B(x)=αxγB(x) = \alpha x^{\gamma} and a self-similar fragmentation kernel k(y,x)=1yk0(x/y)k(y, x) = \frac{1}{y} k_0 (x/ y), we use the asymptotic behaviour proved in (Escobedo, Mischler, Rodriguez-Ricard, Ann. IHP, 2004) to obtain uniqueness of the triplet (α,γ,k0)(\alpha, \gamma, k _0) and a representation formula for k0k_0. To invert this formula, one of the delicate points is to prove that the Mellin transform of the asymptotic profile never vanishes, what we do through the use of the Cauchy integral

    Modèles d'échanges ioniques dans le rein: théorie, analyse asymptotique et applications numériques

    Get PDF
    This thesis of applied mathematics deals with theoretical, numerical and asymptotic questions in transport, motivated by the renal physiology. More specifically, the purpose is to understand and quantify solute exchanges in physiological and pathological cases and to explain why nephrocalcinosis, i.e. the deposition of calcium salts in kidney tissue, arise. The manuscript is divided in two parts. The first part describes the development and the mathematical analysis of a simplified kidney model. It is a system of 33 hyperbolic PDE's with constant velocities, coupled by a non-linear source term and with specific boundary conditions. This model can be considered in the framework of kinetic models with a finite number of velocities and reflexion boundary conditions. We prove that the system is well posed and that it relaxes toward the unique stationary state for large time with an exponential rate of convergence. Thanks to a spectral analysis, we prove that the rate of convergence is exponential. We study the role of two parameters through an asymptotic analysis. One of these analyses is formulated in the framework of hyperbolic relaxation toward a scalar conservation law with an heterogeneous flux on a bounded domain. The second part describes the development and the numerical analysis of a realistic kidney model. It is an hyperbolic system of 27 hyperbolic partial differential equations whose velocities are solutions to 8 non linear differential equations, all coupled by their source term. The boundary conditions are also very specific. We then interpret the results from a physiological point of view, by predicting calcium concentration profiles in the kidney, under normal conditions and in some specific pathological cases.Cette thèse de mathématiques appliquées traite de problèmes théoriques, numériques et asymptotiques en transport motivés par la physiologie rénale. Plus précisément, elle vise à comprendre et quantifier les échanges de solutés qui peuvent mener dans des cas pathologiques à des néphrocalcinoses, qui se caractérisent par des dépôts calciques dans le parenchyme rénal. Le manuscrit est constitué de deux parties. La première partie concerne le développement et l'analyse mathématique d'un modèle simplifié du rein. Il s'agit d'un système de 3 EDP hyperboliques à vitesses constantes, couplées par leur terme source non linéaire et assorti de conditions aux bords spécifiques. Le modèle rentre dans le cadre des modèles cinétiques avec un nombre fini de vitesses et des conditions aux bords de type réflexion. Nous montrons que ce système est bien posé, qu'il tend en temps grand vers un état stationnaire. On montre que le taux de convergence est exponentiel avec des éléments spectraux. Nous proposons l'étude du rôle de deux paramètres à travers une analyse asymptotique. L'une d'entre elles nous place dans le cadre de la relaxation hyperbolique vers une loi de conservation scalaire avec un flux hétérogène en espace sur un domaine borné. La deuxième partie concerne le développement et l'analyse numérique d'un modèle réaliste du rein. Il s'agit d'un système de 27 équations aux dérivées partielles de type hyperboliques dont les vitesses sont les solutions de 8 équations différentielles non linéaires, et toutes ces équations sont couplées par leur terme source. Les conditions aux bords sont là aussi spécifiques au modèle. Nous interprétons ensuite les résultats obtenus d'un point de vue physiologique, en proposant des prédictions de profils de concentration calciques dans le rein, dans le cas normal et dans certains cas pathologiques

    An asymptotic study to explain the role of active transport in models with countercurrent exchangers

    Get PDF
    International audienceWe study a solute concentrating mechanism that can be represented by coupled transport equations with specific boundary conditions. Our motivation for considering this system is urine concentrating mechanism in nephrons. The model consists in 3 tubes arranged in a countercurrent manner. Our equations describe a countercurrent exchanger, with a parameter VV which quantifies the active transport. In order to understand the role of active transport in the mechanism, we consider the limit V --> \infty. We prove that when VV goes to infinity, the system converges to a profile which stays uniformly bounded in VV and which presents a boundary layer at the border of the domain. The effect is that the solute is concentrated at a specific point in the tubes. When considering urine concentration, this is physilogically optimal because the composition of final urine is determined at this point

    Growth-fragmentation model for a population presenting heterogeneity in growth rate: Malthus parameter and long-time behavior

    No full text
    The goal of the present paper is to explore the long-time behavior of the growth-fragmentation equation formulated in the case of equal mitosis and variability in growth rate, under fairly general assumptions on the coefficients. The first results concern the monotonicity of the Malthus parameter with respect to the coefficients. Existence of a solution to the associated eigenproblem is then stated in the case of a finite set of growth rates thanks to Kreȋn-Rutman theorem and a series of estimates on moments. Afterwards, adapting the classical general relative entropy (GRE) method enables us to ensure uniqueness of the eigenelements and derive the long-time asymptotics of the Cauchy problem. We prove convergence towards the steady state including in the case of individual exponential growth known to exhibit oscillations at large times in absence of variability. A few numerical simulations are eventually performed in the case of linear growth rate to illustrate our monotonicity results and the fact that variability, providing enough mixing in the heterogeneous population, is sufficient to re-establish asynchronicity
    corecore