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Abstract

We study a solute concentrating mechanism that can be represented by
coupled transport equations with specific boundary conditions. Our motivation for
considering this system is urine concentrating mechanism in nephrons. The model
consists in 3 tubes arranged in a countercurrent manner. Our equations describe
a countercurrent exchanger, with a parameter V which quantifies the active
transport. In order to understand the role of active transport in the mechanism,
we consider the limit V −→ ∞. We prove that when V goes to infinity, the
system converges to a profile which stays uniformly bounded in V and which
presents a boundary layer at the border of the domain. The effect is that the
solute is concentrated at a specific point in the tubes. When considering urine
concentration, this is physilogically optimal because the composition of final urine
is determined at this point.

Mathematics Subject Classification : 34B18, 34E99, 92C30
Key-words : Countercurrent, active transport, asymptotic analysis, boundary layer,
urine concentration, kidney physiology.

1 Introduction

Many problems occurring in biology or physiology [14, 9] can be described by
transport equations with different propagation velocities that combine together to
produce specific effects. For instance, typical cases are propagation of particules
waves in neurones [5], or diphasic propagation arising in chemical engineering, which
can describe chromatography or distillation [7]. Usually, the stationary states are of
interest and their study constitute a classical field of analysis (see for instance [13] and
the references therein).
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20 M. Tournus

Here, we study a model of a countercurrent exchanger combined with an active
transport pump [6]. Countercurrent exchanges accross parallel tubes can be used for
building up concentration or heat gradient. Our equations come from the modelisation
of kidney nephrons, in which a concentration gradient is amplified by an active
transport pump [16], which plays a fundamental role for urine concentration [11]. In
this particular study, we investigate the effects of active transport using a limiting case.

I

Tube 1 Tube  2 Tube 3

 Fluid flow

Solute movements across the wall

x=0

x=L

Active pump

G H

Figure 1: Representation of the 3-tube architecture in which the fluid circulates.
Tubes are water-impermeable but can exchange solutes with the bath. C1

0 , C2
0 and

C3(L) = C2(L)

The model consists in a fluid circulating at a constant velocity in 3 tubes arranged
in a countercurrent architecture. The 3 tubes are bathing in a common bath in which
no solute can accumulate. Each tube can exchange solute with the bath and solute
transport accross tubes wall is driven by diffusion in all tubes and by an active pump in
tube 3. This active pump extracts solute from tube 3 and carries it into the bath and is
assumed to follow Michaelis-Menten kinetics. We call V the maximum rate achieved
by the pump at saturating concentrations. We call Ci(x) the solute concentration in

tube i at depth x. The nonlinearity V
C3

V

1 + C3
V

represents the effect of active pumps

along tube 3. The fluid enters tube 1 with a concentration value C1
0 and tube 2 with

a concentration value C2
0 . The outlet of tubes 1 and 3 are open at x = L and we

have C2(L) = C3(L). See Figure 1 for a drawing of the system. The stationary
state is of particular interest in renal physiology, given that the kidney acts to preserve
homeostasis.
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The differential system satisfied by C1, C2, C3 is written as



dC1(x)

dx
=

1

3

[
C1(x) + C2(x) + C3(x) + V

C3(x)

1 + C3(x)

]
− C1(x),

dC2(x)

dx
=

1

3

[
C1(x) + C2(x) + C3(x) + V

C3(x)

1 + C3(x)

]
− C2(x),

−dC3(x)

dx
=

1

3

[
C1(x) + C2(x) + C3(x) + V

C3(x)

1 + C3(x)

]
− C3(x)

− V
C3(x)

1 + C3(x)
,

C1(0) = C1
0 , C2(0) = C2

0 , C3(L) = C2(L).

(1)

The specific boundary conditions relate the solutions at different points and make this
system not a mere ordinary differential equation. We call CV = (C1

V , C
2
V , C

3
V ) the

solution of (1). We wish to explain through the analysis of the system for large values of
V , why this combination of active pump and boundary conditions (tube arrangement) is
performing well the task of concentrating the solute at x = L, where the composition
of final urine is determined. We already know [17] that each Ci

V is continuous and
nonnegative on [0, L]. The question we want to answer is : How do the solutions of (1)
behave when V tends to∞?

Other asymptotic studies have been done for similar systems in the context of
hyperbolic relaxation where a parameter is assumed to be small in comparison to the
typical size of the problem [12, 8, 7]. This approach comes from the concept of mean
free path in Boltzmann equation [3]. For example, in [5], the length of the domain is
large, and they establish the asymtotic behavior of the solution in the limiting case of
an infinite domain.

In our case, for answering our question, we prove that CV converges toward a limit
C = (C1, C2, C3) that we calculate. Our analysis uses only direct a priori estimates
and weak limits obtained by compact injections which do not use the specific smooth
form of the non-linearity and makes it very general. We identify completely the limit
as V −→ ∞ including boundary layers. Compact injections give us the convergence
of some particular subsequences, but as we point out that the limit only depends on the
problem data, we are able to prove that the whole sequence converges. The boundary
layers are coming from the particular boundary conditions in the model, which can be
seen as reflection conditions and make the problem specific and interesting.

We state our main results in next section. Section 3 and 4 are devoted to the proofs
of the asymptotic results. Numerical illustrations are given in section 5.

2 Main results

It is possible to identify completely the profiles of the limiting values for the solutions
C1, C2, C3 almost everywhere as V −→∞. This is stated in the
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Theorem 1 (Asymptotics) Solutions to (1) satisfy

C1
V −→

V−→+∞
C1, C2

V −→
V−→+∞

C2, C3
V −→

V−→+∞
C3, Lp(1 ≤ p <∞), a.e.,

(2)
with

C1(x) =
C1

0 + C2
0

2
+

C1
0 − C2

0

2
e−x, C2(x) =

C1
0 + C2

0

2
+

C2
0 − C1

0

2
e−x,

C3(x) = 0 a.e.

(3)

This result is somewhat sharp since we will see that a boundary layer occurs and thus
the convergence does not hold in L∞. To state our next result, we need to define the
quantity

M = ess inf{ 1

C3
V (x)

;x ∈ [0, L], V ∈ R+}. (4)

We prove in the next section that M > 0. The second result is more accurate and states
that C3 decreases exponentially fast to zero. We describe also the boundary layer that
appears at x = L.

Theorem 2 (The boundary layer) The limits of the boundary values are

C1
V (L) −→

V−→+∞
C1

0 + C2
0 ,

C2
V (L) = C3

V (L) −→
V−→+∞

C1
0 + C2

0 + (C2
0 − C1

0 )e
−L,

(5)

The behavior of C3
V for x ≃ L is given by the inequalities

C3
V (x) ≤ C3

V (L) exp
(
− 2

3
VM(L− x)

)
+

K

V

[
1− exp

(
− 2

3
VM(L− x)

)]
, (6)

C3
V (x) ≥ C3

V (L) exp
(
− 2

3
V (L− x)

)
+

K

V

[
1− exp

(
− 2

3
V (L− x)

)]
, (7)

where K and K are two constants which do not depend on V .

The next section is dedicated to the proof of these results.

3 Proof of the asymptotic results(Theorem 1)

First step: Uniform bounds on the solution.

Lemma 3 There is a constant K depending only on C1
0 , C

2
0 but not on V such that

C1
V (L) ≤ K, C3

V (0) ≤ C1
0 + C2

0 , (8)∫ L

0

Ci
V (x)dx ≤ K;V

∫ L

0

C3
V (x)dx ≤ K;

∫ L

0

|dC
3
V

dx
(x)|dx ≤ K; 0 ≤ Ci

V ≤ K.

(9)
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Proof. To prove (8), we sum the three lines of (1), and we obtain a quantity which
does not depend on x,

C1
V (x) + C2

V (x)− C3
V (x) =: K(V ). (10)

Using the boundary values, we find uniform bounds on K(V )

K(V ) = C1
0 + C2

0 − C3
V (0) ≤ C1

0 + C2
0 ,

K(V ) = C1
V (L) + C2

V (L)− C3
V (L) = C1

V (L) ≥ 0,
(11)

and thus
0 ≤ K(V ) ≤ C1

0 + C2
0 . (12)

The combination of (11) and (12) proves (8).
Then, we prove the first two bounds in (9). The first equation can be written

dC1
V (x)

dx
+ C1

V (x) = QV (x) ≥ 0, (13)

with

QV (x) =
1

3

[
C1(x) + C2(x) + C3(x) + V

C3(x)

1 + C3(x)

]
.

Therefore we also have
d

dx

(
C1

V (x)e
x
)
= QV (x)e

x.

By integration over [0, L], we obtain∫ L

0

QV (x)dx ≤
∫ L

0

QV (x)e
xdx = C1

V (L)e
L − C1

0 ≤ (C1
0 + C2

0 )e
L. (14)

We conclude that∫ L

0

V
C3

V (x)

1 + C3
V (x)

dx,

∫ L

0

Ci
V (x)dx, i = 1, 2, 3, (15)

are uniformly bounded by (C1
0 + C2

0 )e
L. Then, by injecting equation (14) in (13) and

because the Ci
V are positive, we have∫ L

0

|dC
i
V

dx
(s)|ds ≤ (C1

0 + C2
0)e

L i = 1, 2, 3. (16)

We finally prove that the functions
(
Ci

V (x)
)
V

are uniformly bounded in V . We write

|Ci
V (x)| = |Ci

V (0) +

∫ x

0

dCi
V

dx
(s)ds| ≤ |Ci

V (0)|+
∫ L

0

|dC
i
V

dx
(s)|ds.

Thanks to (16) and (8), we conclude
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∥Ci
V ∥∞ ≤ (C1

0 + C2
0 )(e

L + 1). (17)

�
The upper bound (17) on C3

V gives us that M > 0.

Second step: The behaviour of Ci
V when V −→∞

Lemma 4 After extraction of a subsequence,

C1
V −→

V−→+∞
C1, C2

V −→
V−→+∞

C2, C3
V −→

V−→+∞
0, Lp(1 ≤ p <∞), a.e.,

(18)
and C1 + C2 = K0 for some constant K0.

Proof. We know from Lemma 3 that
(
Ci

V

)
V

is bounded in BV , then, using the
Rellich-Kondrachov compact injection [4]

Ci
V −→

V−→+∞
Ci, in Lp(1 ≤ p <∞) and a.e. (19)

On the other hand, we have thanks to (15),∫ L

0

C3
V (x)

1 + C3
V (x)

dx −→
V−→+∞

0,

and thus
C3 ≡ 0 a.e. (20)

Combining (10) with (20), we have C1 + C2 = K0 for some constant K0. �

Third step : The behavior of
dC3

V

dx
. We defineM1[0, L] the set of Radon measures

on [0, L], taken with the weak convergence of measures.

Lemma 5 There exists a nonnegative constant B such that, after extraction,

C3
V (L) −→

V−→+∞
B,

dC3
V

dx
−→

V−→+∞
Bδx=L inM1[0, L],

Proof . The information (16) implies that
(dC3

V

dx

)
V

is bounded in L1[0, L], then

[2] there exists µ ∈M1[0, L] a Radon measure so that, after extraction,

dC3
V

dx
−→

V−→+∞
µ in the sense of measures. (21)

For all functions ϕ ∈ C1[0, L] such as ϕ(0) = ϕ(L) = 0, we have using (18)∫ L

0

ϕ(x)
dC3

V

dx
(x)dx =

∫ L

0

C3
V (x)

dϕ

dx
(x)dx −→

V−→+∞
0, (22)
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which means,
µ = 0 on ]0, L[. (23)

Therefore, we can write in the sense of measures

dC3
V

dx
−→

V−→+∞
βδx=L + αδx=0. (24)

It remains to compute α and β. To do so, we notice that
(
C3

V (L)
)
V

and
(
C3

V (0)
)
V

are both real value bounded sequences, so, there are two nonnegative real numbers
A,B such that, after extraction,

lim
V→∞

C3
V (L) = B ≥ 0, lim

V→∞
C3

V (0) = A ≥ 0. (25)

For ϕ ∈ C1
(
[0, L]

)
, we compute

∫ L

0

ϕ(x)
dC3

V

dx
(x)dx =

C3
V (L)ϕ(L)− C3

V (0)ϕ(0)−
∫ L

0

C3
V (x)

dϕ

dx
(x)dx −→

V−→+∞
Bϕ(L)−Aϕ(0),

which means

dC3
V

dx
−→

V−→+∞
Bδx=L −Aδx=0 in the sense of measures. (26)

We still have to prove A = 0. To do so we use the system of equations (1) which
gives us

dC3
V

dx
≥ −1

3
(C1

V + C2
V ).

As we know from Lemma 3 that Ci
V is uniformly bounded from above by K, we also

have,
dC3

V

dx
≥ −2

3
K,

which implies A = 0. �

Fourth step: The limiting equation.

Lemma 6 In the limit V −→∞, we have

C1(x) + C2(x) = C1
0 + C2

0 , V
C3

V

1 + C3
V

− C1
V + C2

V

2
−→ 3

2
BδL

in the sense of measures.
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Proof. We deduce from (19) and (26), by injecting in the third line of (1) that

V
C3

V

1 + C3
V

− C1
V + C2

V

2
− 3

2
BδL −→ 0 in the sense of measures. (27)

Reinjecting in the first lines of (1), we find the limit equations on C1 et C2


dC1

dx
= −1

2
C1 +

1

2
C2 +

1

2
BδL,

dC2

dx
= −1

2
C2 +

1

2
C1 +

1

2
BδL,

C1(0) = C1
0 , C2(0) = C2

0 .

(28)

Then, summing the two lines,


d(C2 + C1)

dx
= BδL,

(C1 + C2)(0) = C1
0 + C2

0 .

(29)

By integrating this differential equation, we deduce [15] that

C1(x) + C2(x) = C1
0 + C2

0 a.e.

Indeed, the weak formulation of (29) is

∀ϕ ∈ C1[0, L],
∫ L

0

dϕ

dx
(x)[C1 + C2](x)dx+ ϕ(0)[C1

0 + C2
0 ] = 0. (30)

By choosing ϕ such as ϕ(0) = 0, we obtain C1 + C2 ≡ α a.e., for some constant α.
and then, by choosing any ϕ ∈ C1[0, L], we have that α = C1

0 + C2
0 . �

The limit equation on Ci then becomes
dCi

dx
(x) = −Ci(x) +

C1
0 + C2

0

2
+

1

2
BδL(x), i = 1, 2,

Ci(0) = Ci
0.

Fifth step: Explicit solution for the limit Using the variation of parameters, we
compute easily C1 and C2. We find

C1(x) =
C1

0 + C2
0

2
+

C1
0 − C2

0

2
e−x, C2(x) =

C1
0 + C2

0

2
+

C2
0 − C1

0

2
e−x. (31)

In particular, (C1, C2, C3) are C∞ functions.
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4 Proof of theorem 2

The limiting profiles are C∞ in [0, L], nevertheless, the Dirac mass at x = L indicates
a boundary layer. The derivatives of the profiles for V =∞ are given by

dC1

dx
=

1

2

[
(C2

0 − C1
0 )e

−x +BδL

]
,

dC2

dx
=

1

2

[
(C1

0 − C2
0 )e

−x +BδL

]
, in the sense of measures,

dC3

dx
= BδL.

(32)

First Step: The limiting values of C at x = L

Lemma 7

C1
V (L) −→

V−→+∞
C1

0 + C2
0 ,

C2
V (L) = C3

V (L) −→
V−→+∞

C1
0 + C2

0 + (C2
0 − C1

0 )e
−L.

(33)

Proof. We already have defined in Lemma 5

B = lim
V→∞

C2
V (L) = lim

V→∞
C3

V (L).

We know that the Ci
V (L) are bounded real numbers, then we define

B′ = lim
V→∞

C1
V (L).

Our first task is to determine B. We compute for all ϕ ∈ C1[0, L],

∫ L

0

ϕ(x)
dC2

V (x)

dx
(x)dx = ϕ(L)C2

V (L)− ϕ(0)C2
V (0)−

∫ L

0

ϕ

dx
(x)C2

V (x)dx

which converges when V −→ +∞ toward

Bϕ(L)− C2
0ϕ(0)−

∫ L

0

ϕ

dx
(x)[

C1
0 + C2

0

2
+

C2
0 − C1

0

2
e−x]dx

= Bϕ(L)− C2
0ϕ(0)−

C1
0 + C2

0

2
ϕ(L) +

C1
0 + C2

0

2
ϕ(0)

− C2
0 − C1

0

2

[
e−Lϕ(L)− ϕ(0) +

∫ L

0

e−xϕ(x)
]

= Bϕ(L)− C1
0 + C2

0

2
ϕ(L) +

C2
0 − C1

0

2
e−Lϕ(L) +

C2
0 − C1

0

2

∫ L

0

e−xϕ(x)dx.

(34)
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On the other hand, thanks to (32)∫ L

0

ϕ(x)
dC2

V (x)

dx
(x)dx −→

V−→+∞

C2
0 − C1

0

2

∫ L

0

e−xϕ(x)dx+
B

2
ϕ(L). (35)

By equalizing (34) and (35), we find

B = C1
0 + C2

0 + (C2
0 − C1

0 )e
−L, (36)

which is the unique limit of C2
V (L) and C3

V (L). In particular, B > 0. Our second task
is to obtain B’. We perform the same computation for C1

V . On the one hand, for all
ϕ ∈ C1[0, L],∫ L

0

ϕ(x)
dC1

V (x)

dx
(x)dx = ϕ(L)C1

V (L)− ϕ(0)C1
V (0)−

∫ L

0

ϕ

dx
(x)C1

V (x)dx

which converges when V −→ +∞ toward

B′ϕ(L)− C1
0 + C2

0

2
ϕ(L) +

C1
0 − C2

0

2
e−Lϕ(L) +

C1
0 − C2

0

2

∫ L

0

e−xϕ(x)dx, (37)

and on the other hand, ∫ L

0

ϕ(x)
dC1

V (x)

dx
(x)dx

converges toward
C2

0 − C1
0

2

∫ L

0

e−xϕ(x)dx+
B

2
ϕ(L). (38)

This gives us
B′ = C1

0 + C2
0 , (39)

and ends the proof of Lemma 7. �

We proved in passing that the limits of the subsequences we deal with are only
determined by the problem data and do not depend on the subsequence we choose.
Thus, the whole sequences converge.

Second step: The boundary layer.

Lemma 8 For all x ∈ [0, L] the inequalities hold

C3
V (x) ≤ C3

V (L)exp
(
− 2

3
VM(L− x)

)
+

K

V

[
1− exp

(
− 2

3
VM(L− x)

)]
, (40)

C3
V (x) ≥ C3

V (L)exp
(
− 2

3
V (L− x)

)
+

K

V

[
1− exp

(
− 2

3
V (L− x)

)]
, (41)

which means that C3
V (x) relaxes exponentially fast with V to zero, away from the

boundary layer at X = L.
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Proof. We can write the third line of (1) as

−dC3
V (x)

dx
+

2

3
V

C3
V (x)

1 + C3
V (x)

=
1

3

[
C1(x) + C2(x)− 2C3(x)

]
. (42)

We multiply this equation by the exponential factor

F (x) = exp
(
− 2

3
V

∫ x

L

1

1 + C3
V (s)

ds
)
, (43)

−dC3
V (x)

dx
F (x)+

2

3
V

C3
V (x)

1 + C3
V (x)

F (x) =
1

3

[
C1

V (x)+C2
V (x)−2C3

V (x)
]
F (x), (44)

and we obtain
d

dx

[
C3

V (x)F (x)
]
= −1

3

[
C1

V (x) + C2
V (x)− 2C3

V (x)
]
F (x).

Integrating this equation between L and x, we find,

C3
V (x)F (x)− C3

V (L) =

−
∫ x

L

1

3

[
C1

V (x) + C2
V (x)− 2C3

V (x)
]
exp

(
− 2

3
V

∫ u

L

1

1 + C3
V (s)

ds
)
du.

By Lemma 3, we have,

C3
V (x) exp

(
− 2

3
V

∫ x

L

1

1 + C3
V (s)

ds
)
≤

C3
V (L) +K ′

∫ L

x

exp
(
− 2

3
V

∫ u

L

1

1 + C3
V (s)

ds
)
du.

We can now complete our calculation. We estimate

C3
V (x) ≤ C3

V (L) exp
(
− 2

3
V

∫ L

x

1

1 + C3
V (s)

ds
)

+K ′
[ ∫ L

x

exp
(
− 2

3
V

∫ u

L

1

1 + C3
V (s)

ds
)
exp

(
− 2

3
V

∫ L

x

1

1 + C3
V (s)

ds
)]

du

= C3
V (L) exp

(
− 2

3
V

∫ L

x

1

1 + C3
V (s)

ds
)

+K ′
∫ L

x

exp
(
− 2

3
V

∫ u

x

1

1 + C3
V (s)

ds
)
du

≤ C3
V (L) exp

(
− 2

3
V

∫ L

x

1

1 + C3
V (s)

ds
)
+K ′

∫ L

x

exp
(
− 2

3
VM(u− x)

)
du

= C3
V (L) exp

(
− 2

3
V

∫ L

x

1

1 + C3
V (s)

ds
)
+

K

V

[
1− exp

(
− 2

3
VM(L− x)

)]
.

where in the last equality we have used that 0 < M <
1

1 + C3
V

and (40) is proved.

We can prove in the same way the second part of Lemma 8. �
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5 Numerical results

5.1 The numerical algorithm

Numerical simulations illustrate the solute concentration mechanism at x = L that
is proved in the theoretical result. The system (1) can be seen as the stationary state
associated with the following dynamical problem

∂C1

∂t
(x, t) +

∂C1

∂x
(x, t) =

1

3

[
C1(x, t) + C2(x, t) + C3(x, t) + V

C3(x, t)

1 + C3(x, t)

]
− C1(x, t),

∂C2

∂t
(x, t) +

∂C2

∂x
(x, t) =

1

3

[
C1(x, t) + C2(x, t) + C3(x, t) + V

C3(x, t)

1 + C3(x, t)

]
− C2(x, t),

∂C3

∂t
(x, t)− ∂C3

∂x
(x, t) =

1

3

[
C1(x, t) + C2(x, t) + C3(x, t) + V

C3(x, t)

1 + C3(x, t)

]
− C3(x, t)

− V
C3(x, t)

1 + C3(x, t)
,

C1(0, t) = C1
0 , C2(0, t) = C2

0 , C3(L, t) = C2(L, t),

(45)

which we complete with nonnegative initial concentrations C1(x, 0), C2(x, 0),
C3(x, 0) in BV [0, L]. We proved in [17] that for every nonnegative initial condition,
the system relaxes in L1 toward the unique solution to the stationary system (1),
which is written, by denoting here C = (C1, C2, C3) the solution to (45) and
C = (C1, C2, C3) the solution to (1),

∥C(x, t)− C(x)∥L1 ↘
t→∞

0. (46)

To obtain this result, we prove that this is the case when the initial condition of
(45) is a sub- or super-solution to (1), then we remark that every initial condition in(
BV [0, L]

)3
can be stuck between a sub and a super-solution and we conclude with

a comparison principle and with an argument of monotony. In [17], we developp an
algorithm to solve (45). This algorithm is based on a finite volume type method [1, 10].
We use a time step ∆t and a mesh of size ∆x = L/N with N the number of cells
Qk = (xk−1/2, xk+1/2) (that means x1/2 = 0 and xN+1/2 = L). The discrete times
are denoted by tn = n∆t. We discretize the initial states as

Cj,0
k =

1

∆x

∫
Qk

Cj(x, 0)dx, i = 1, 2, 3, k = 1, ..., N. (47)
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We call Cj,n
k the discrete solution at time tn in tube i that approximates equation

(45), for k ∈ [0, N ]. We use the scheme



C1,n+1
k = C1,n

k − ∆t

∆x
(C1,n

k − C1,n
k−1)

+ ∆t
(1
3

[
C1,n

k + C2,n
k + C3,n

k + V
C3,n

k

1 + C3,n
k

]
− C1,n

k

)
,

C2,n+1
k = C2,n

k − ∆t

∆x
(C2,n

k − C2,n
k−1)

+ ∆t
(1
3

[
C1,n

k + C2,n
k + C3,n

k + V
C3,n

k

1 + C3,n
k

]
− C2,n

k

)
,

C3,n+1
k = C3,n

k +
∆t

∆x
(C3,n

k+1 − C3,n
k )

+ ∆t
(1
3

[
C1,n

k + C2,n
k + C3,n

k + V
C3,n

k

1 + C3,n
k

]
− C3,n

k − V
C3,n

k

1 + C3,n
k

)
.

(48)

For boundary conditions, at each time we choose: C1,n
0 = C1

0 , C2,n
0 = C2

0 ,
C3,n

N+1 = C2,n
N .

Because this is an explicit scheme, departing from (47), we obtain directly the
solution C1,n+1

k at time tn+1 from that at time tn.

Thus, we can reach the solution to (1) by iterating this scheme for n large enough.
The stability condition which ensures the positivity of the scheme is given by

∆t ≤ 3∆x

3 + 2∆x(1 + V )
, (49)

and detailed in [17]. This CFL condition becomes a tough constraint on ∆t when we
choose V large. The constraint on ∆x also depends on V because it is function of the
size of the boundary layer. For each V , to be accurate enough around the boundary
layer point L, we discretize the space in NV cells and we validate a posteriori that
this number of cells is high enough since we know from the analytical solution the
behaviour of the solution for large values of V .

5.2 Concentration profiles for different V

We present in figure 2 concentration profiles for V = 1, V = 10, V = 50 and
V = 100.
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Figure 2: Concentration profiles for V = 1, 10, 50, 100, on a domain of length L = 4.

When the value of the rate V has the same order of magnitude as the parameters
of (1), concentration is hardly increasing in tubes 2 and 3, but decreasing in tube 1. It
comes from the fact that we chose C1

0 > C2
0 , but it would have been the contrary in the

opposite case. With low values of V , the difusive part of the system (1) is paramount
and concentrations tend to homogenize along the tubes. If we increase the pump rate
by a factor 10, the concentration tends to approach zero in tube 3 and is abruptly
increasing from L = 3 and it achieves at L = 4 a value greater than max(C1

0 , C
2
0 ). We

clearly observe the limit profiles and the boundary layer appear for V ≥ 50.

Illustration of Theorem 2. We want to illustrate that the bounds from above and from
below found in Theorem 2 give an accurate descrition of the qualitative behavior of
C3.
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Figure 3: Zoom on the interval [0.99L,L] of figure 2 for V = 1000.
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Figure 4: The curve in the middle represents C3
1000 on [0.99L,L]. The upper curve

represents the upperbound f for C3 found in Lemma 8 and the the lower curve
represents g, the bound from below.

Figure 3 displays a zoom of the numerical aproximation of C3
1000(L) that we

will denote C3
num,1000(L). This approximative value enables us to define Mnum =

1

C3
num,1000(L)

. To illustrate Lemma 8, we define

f(x) = C3
num,1000(L) exp

(
− 2× 1000

3
Mnum(L− x)

)
and

g(x) = C3
num,1000(L) exp

(
− 2

3
× 1000(L− x)

)
.

In Figure 4, we depict C3
1000 on the interval [

99L

100
, L] and the profiles of the two

functions f and g which control C3
1000. We observe that g ≤ C3

num,1000 ≤ f , as
expected in theorem 2, and then that the component C3

V decreases exponentially to
zero.
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6 Conclusion

Motivated by renal flows, we have studied a concentration mechanism with an active
pump characterized by a parameter V . As expected, for V large enough, a large axial
solute concentration gradient appears in all tubes. The result of our analysis is that
the concentrations are uniformly bounded in V for all x ∈ [0, L], and so are their
derivatives, except at x = L. In the limit V =∞, the concentration gradient converges
to a Dirac profile at x = L. We obtain a limit concentration profile in all tubes which
presents a boundary layer at x = L. In the urine concentrating model, we are mostly
interested on the behaviour at x = L, because it is at this depth that the composition of
final urine is determined. Therefore, our analysis explains why active transport plays
a very specific role, which is to increase solute concentration at x = L and only at
x = L.
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