92 research outputs found
An associative network with spatially organized connectivity
We investigate the properties of an autoassociative network of
threshold-linear units whose synaptic connectivity is spatially structured and
asymmetric. Since the methods of equilibrium statistical mechanics cannot be
applied to such a network due to the lack of a Hamiltonian, we approach the
problem through a signal-to-noise analysis, that we adapt to spatially
organized networks. The conditions are analyzed for the appearance of stable,
spatially non-uniform profiles of activity with large overlaps with one of the
stored patterns. It is also shown, with simulations and analytic results, that
the storage capacity does not decrease much when the connectivity of the
network becomes short range. In addition, the method used here enables us to
calculate exactly the storage capacity of a randomly connected network with
arbitrary degree of dilution.Comment: 27 pages, 6 figures; Accepted for publication in JSTA
Odor supported place cell model and goal navigation in rodents
Experiments with rodents demonstrate that visual cues play an important role in the control of hippocampal place cells and spatial navigation. Nevertheless, rats may also rely on auditory, olfactory and somatosensory stimuli for orientation. It is also known that rats can track odors or self-generated scent marks to find a food source. Here we model odor supported place cells by using a simple feed-forward network and analyze the impact of olfactory cues on place cell formation and spatial navigation. The obtained place cells are used to solve a goal navigation task by a novel mechanism based on self-marking by odor patches combined with a Q-learning algorithm. We also analyze the impact of place cell remapping on goal directed behavior when switching between two environments. We emphasize the importance of olfactory cues in place cell formation and show that the utility of environmental and self-generated olfactory cues, together with a mixed navigation strategy, improves goal directed navigation
Architectures of control in consumer product design
Copyright @ 2005 Social Services Research GroupThe idea of architectures of control is introduced through examples ranging from urban planning to digital rights management, and the intentions behind their use in consumer products are examined, with reference to case studies of printer cartridges and proposed 'optimum lifetime products.' The reactions of the technical community and consumers themselves are also explored, along with some wider implications for society
A Federated Design for a Neurobiological Simulation Engine: The CBI Federated Software Architecture
Simulator interoperability and extensibility has become a growing requirement in computational biology. To address this, we have developed a federated software architecture. It is federated by its union of independent disparate systems under a single cohesive view, provides interoperability through its capability to communicate, execute programs, or transfer data among different independent applications, and supports extensibility by enabling simulator expansion or enhancement without the need for major changes to system infrastructure. Historically, simulator interoperability has relied on development of declarative markup languages such as the neuron modeling language NeuroML, while simulator extension typically occurred through modification of existing functionality. The software architecture we describe here allows for both these approaches. However, it is designed to support alternative paradigms of interoperability and extensibility through the provision of logical relationships and defined application programming interfaces. They allow any appropriately configured component or software application to be incorporated into a simulator. The architecture defines independent functional modules that run stand-alone. They are arranged in logical layers that naturally correspond to the occurrence of high-level data (biological concepts) versus low-level data (numerical values) and distinguish data from control functions. The modular nature of the architecture and its independence from a given technology facilitates communication about similar concepts and functions for both users and developers. It provides several advantages for multiple independent contributions to software development. Importantly, these include: (1) Reduction in complexity of individual simulator components when compared to the complexity of a complete simulator, (2) Documentation of individual components in terms of their inputs and outputs, (3) Easy removal or replacement of unnecessary or obsoleted components, (4) Stand-alone testing of components, and (5) Clear delineation of the development scope of new components
The Brain's Router: A Cortical Network Model of Serial Processing in the Primate Brain
The human brain efficiently solves certain operations such as object recognition and categorization through a massively parallel network of dedicated processors. However, human cognition also relies on the ability to perform an arbitrarily large set of tasks by flexibly recombining different processors into a novel chain. This flexibility comes at the cost of a severe slowing down and a seriality of operations (100β500 ms per step). A limit on parallel processing is demonstrated in experimental setups such as the psychological refractory period (PRP) and the attentional blink (AB) in which the processing of an element either significantly delays (PRP) or impedes conscious access (AB) of a second, rapidly presented element. Here we present a spiking-neuron implementation of a cognitive architecture where a large number of local parallel processors assemble together to produce goal-driven behavior. The precise mapping of incoming sensory stimuli onto motor representations relies on a βrouterβ network capable of flexibly interconnecting processors and rapidly changing its configuration from one task to another. Simulations show that, when presented with dual-task stimuli, the network exhibits parallel processing at peripheral sensory levels, a memory buffer capable of keeping the result of sensory processing on hold, and a slow serial performance at the router stage, resulting in a performance bottleneck. The network captures the detailed dynamics of human behavior during dual-task-performance, including both mean RTs and RT distributions, and establishes concrete predictions on neuronal dynamics during dual-task experiments in humans and non-human primates
Spatial representation for navigation in animats
This article considers the problem of spatial representation for animat navigation systems. It is proposed that the global navigation task, or "wayfinding, " is best supported by multiple interacting subsystems, each of which builds its own partial representation of relevant world knowledge. Evidence from the study of animal navigation is reviewed to demonstrate that similar principles underlie the wayfinding behavior of animals, including humans. A simulated wayfinding system is described that embodies and illustrates several of the themes identified with animat navigation. This system constructs a network of partial models of the quantitative spatial relations between groups of salient landmarks. Navigation tasks are solved by propagating egocentric view information through this network, using a simple but effective heuristic to arbitrate between multiple solutions
- β¦