230 research outputs found
Study of the corrosion behavior of lead-free α-brass (CuZn21Si3P) and (α+β)-brass (CuZn36Pb2As) in simulated drinking water and tap water
Corrosion behavior and quantification of Zn and Cu ions release of two types of brass, (α+β)-brass (CuZn36Pb2As) and lead-free α-brass (CuZn21Si3P) were studied in tap water (City of Rabat) and simulated drinking water. Stationary electrochemical methods of potential monitoring and polarization curves and trans-methods showed that α-brass resists corrosion better than (α + β)-brass, This is due to the presence of elements such as Cu, Ni, Si, and Al which improve the protective performance of the oxide film, and temperature affects both alloy’s electrochemical behavior in the two mediums. It is more significant in tap water than in simulated drinking water. Inductively Coupled Plasma (ICP) spectroscopy was also used to follow the evolution of Cu2+ and Zn2+ ion concentration as a function of time and to determine dezincification factors, which are found to be greater than 1 and increase as a function of time in both media, their values are also significantly higher in drinking water than in simulated water. After a long time of exposure with agitation (28 days), SEM micrographs confirm the results obtained from the polarization and impedance curves, as well as from the ICP study. The tap water showed more corrosion than the simulated drinking water for both alloys. This may be due to the presence of solid particles in the drinking water, such as sand or limestone, which may affect substrates surface by other phenomenon as erosion
The Infrared Continuum Sizes of Be Star Disks
We present an analysis of the near-infrared continuum emission from the
circumstellar gas disks of Be stars using a radiative transfer code for a
parametrized version of the viscous decretion disk model. This isothermal gas
model creates predicted images that we use to estimate the HWHM emission radius
along the major axis of the projected disk and the spatially integrated flux
excess at wavelengths of 1.7, 2.1, 4.8, 9, and 18 ?m. We discuss in detail the
effect of the disk base density, inclination angle, stellar effective
temperature, and other physical parameters on the derived disk sizes and color
excesses. We calculate color excess estimates relative to the stellar V -band
flux for a sample of 130 Be stars using photometry from 2MASS and the AKARI
infrared camera all-sky survey. The color excess relations from our models make
a good match of the observed color excesses of Be stars. We also present our
results on the projected size of the disk as a function of wavelength for the
classical Be star ? Tauri, and we show that the model predictions are
consistent with interferometric observations in the H, K', and 12 \mu m bands
Multi-epoch Near-Infrared Interferometry of the Spatially Resolved Disk Around the Be Star Zeta Tau
We present interferometric observations of the Be star Zeta Tau obtained
using the MIRC beam combiner at the CHARA Array. We resolved the disk during
four epochs in 2007-2009. We fit the data with a geometric model to
characterize the circumstellar disk as a skewed elliptical Gaussian and the
central Be star as a uniform disk. The visibilities reveal a nearly edge-on
disk with a FWHM major axis of ~ 1.8 mas in the H-band. The non-zero closure
phases indicate an asymmetry within the disk. Interestingly, when combining our
results with previously published interferometric observations of Zeta Tau, we
find a correlation between the position angle of the disk and the spectroscopic
V/R ratio, suggesting that the tilt of the disk is precessing. This work is
part of a multi-year monitoring campaign to investigate the development and
outward motion of asymmetric structures in the disks of Be stars.Comment: Accepted for publication in the Astronomical Journal. 27 pages, 7
Figure
Regeneration in sponge Sycon ciliatum mimics postlarval development
Somatic cells dissociated from an adult sponge can reorganize and develop into a juvenile-like sponge, a remarkable phenomenon of regeneration. However, the extent to which regeneration recapitulates embryonic developmental pathways has remained enigmatic. We have standardized and established a sponge Sycon ciliatum regeneration protocol from dissociated cells. Morphological analysis demonstrated that dissociated sponge cells follow a series of
morphological events resembling postembryonic development. We performed high-throughput sequencing on regenerating samples and compared the data with that from regular postlarval development. Our comparative transcriptomic analysis revealed that sponge regeneration is as equally dynamic as embryogenesis. We found that sponge regeneration is orchestrated by recruiting pathways similar to those utilized in embryonic development. We also demonstrated that sponge regeneration is accompanied by cell death at early stages, revealing the importance of apoptosis in remodelling the primmorphs to initiate re-development. Because sponges are likely to be the first branch of extant multicellular animals, we suggest that this system can be explored to study the genetic features underlying the evolution of multicellularity and regeneratio
Spectral Energy Distributions of Be and Other Massive Stars
We present spectrophotometric data from 0.4 to 4.2 microns for bright,
northern sky, Be stars and several other types of massive stars. Our goal is to
use these data with ongoing, high angular resolution, interferometric
observations to model the density structure and sky orientation of the gas
surrounding these stars. We also present a montage of the H-alpha and
near-infrared emission lines that form in Be star disks. We find that a
simplified measurement of the IR excess flux appears to be correlated with the
strength of emission lines from high level transitions of hydrogen. This
suggests that the near-IR continuum and upper level line fluxes both form in
the inner part of the disk, close to the star.Comment: 2010, PASP, 122, 37
Angular Diameters of the G Subdwarf Cassiopeiae A and the K Dwarfs Draconis and HR 511 from Interferometric Measurements with the CHARA Array
Using the longest baselines of the CHARA Array, we have measured the angular
diameter of the G5 V subdwarf Cas A, the first such determination for a
halo population star. We compare this result to new diameters for the higher
metallicity K0 V stars, Dra and HR 511, and find that the metal-poor
star, Cas A, has an effective temperature ( K),
radius (), and absolute luminosity
() comparable to the other two stars with later
spectral types. We show that stellar models show a discrepancy in the predicted
temperature and radius for Cas A, and we discuss these results and how
they provide a key to understanding the fundamental relationships for stars
with low metallicity.Comment: Accepted for publication in The Astrophysical Journa
Probing the Inner Disk Emission of the Herbig Ae Stars HD 163296 and HD 190073
This is the author accepted manuscript. The final version is available from American Astronomical Society / IOP Publishing via the DOI in this record.The physical processes occurring within the inner few astronomical units of proto-planetary disks surrounding Herbig Ae stars are crucial to setting the environment in which the outer planet-forming disk evolves and put critical constraints on the processes of accretion and planet migration. We present the most complete published sample of high angular resolution H- and K-band observations of the stars HD 163296 and HD 190073, including 30 previously unpublished nights of observations of the former and 45 nights of the latter with the CHARA long-baseline interferometer, in addition to archival VLTI data. We confirm previous observations suggesting significant near-infrared emission originates within the putative dust evaporation front of HD 163296 and show this is the case for HD 190073 as well. The H- and K-band sizes are the same within (3±3)% for HD 163296 and within (6±10)% for HD 190073. The radial surface brightness profiles for both disks are remarkably Gaussian-like with little or no sign of the sharp edge expected for a dust evaporation front. Coupled with spectral energy distribution analysis, our direct measurements of the stellar flux component at H and K bands suggest that HD 190073 is much younger (<400 kyr) and more massive (~5.6 M⊙) than previously thought, mainly as a consequence of the new Gaia distance (891 pc).JDM and BRS acknowledge support from NSF-AST 1506540 and AA acknowledges support from NSF-AST 1311698.
CLD, AK, and SK acknowledge support from the ERC Starting Grant “ImagePlanetFormDiscs” (Grant Agreement
No. 639889), STFC Rutherford fellowship/grant (ST/J004030/1, ST/K003445/1) and Philip Leverhulme Prize (PLP2013-110).
FB acknowledges support from NSF-AST 1210972 and 1445935. MS acknowledges support by the NASA
Origins of Solar Systems grant NAG5-9475, and NASA Astrophysics Data Program contract NNH05CD30C. The CHARA Array is supported by the National Science Foundation under Grant No. AST-1211929, AST-1636624,
and AST-1715788. Institutional support has been provided from the GSU College of Arts and Sciences and the GSU
Office of the Vice President for Research and Economic Development
Protein Pattern Formation
Protein pattern formation is essential for the spatial organization of many
intracellular processes like cell division, flagellum positioning, and
chemotaxis. A prominent example of intracellular patterns are the oscillatory
pole-to-pole oscillations of Min proteins in \textit{E. coli} whose biological
function is to ensure precise cell division. Cell polarization, a prerequisite
for processes such as stem cell differentiation and cell polarity in yeast, is
also mediated by a diffusion-reaction process. More generally, these functional
modules of cells serve as model systems for self-organization, one of the core
principles of life. Under which conditions spatio-temporal patterns emerge, and
how these patterns are regulated by biochemical and geometrical factors are
major aspects of current research. Here we review recent theoretical and
experimental advances in the field of intracellular pattern formation, focusing
on general design principles and fundamental physical mechanisms.Comment: 17 pages, 14 figures, review articl
The H-band Emitting Region of the Luminous Blue Variable P Cygni: Spectrophotometry and Interferometry of the Wind
This is the final version of the article. Available from American Astronomical Society / IOP Publishing via the DOI in this record.We present the first high angular resolution observations in the near-infrared H band (1.6 μm) of the luminous blue variable star P Cygni. We obtained six-telescope interferometric observations with the CHARA Array and the MIRC beam combiner. These show that the spatial flux distribution is larger than expected for the stellar photosphere. A two-component model for the star (uniform disk) plus a halo (two-dimensional Gaussian) yields an excellent fit of the observations, and we suggest that the halo corresponds to flux emitted from the base of the stellar wind. This wind component contributes about 45% of the H-band flux and has an angular FWHM = 0.96 mas, compared to the predicted stellar diameter of 0.41 mas. We show several images reconstructed from the interferometric visibilities and closure phases, and they indicate a generally spherical geometry for the wind. We also obtained near-infrared spectrophotometry of P Cygni from which we derive the flux excess compared to a purely photospheric spectral energy distribution. The H-band flux excess matches that from the wind flux fraction derived from the two-component fits to the interferometry. We find evidence of significant near-infrared flux variability over the period from 2006 to 2010 that appears similar to the variations in the Hα emission flux from the wind.We acknowledge with thanks the variable star observations from the AAVSO International Database contributed by observers worldwide and used in this research. Support for Ritter Astrophysical Research Center during the time of the observations was provided by the National Science Foundation Program for Research and Education with Small Telescopes (NSF-PREST) under grant AST-0440784 (N.D.M.). This work was also supported by the National Science Foundation under grants AST-0606861 and AST-1009080 (D.R.G.). N.D.R. gratefully acknowledges his current CRAQ postdoctoral fellowship. We are grateful for the insightful comments of A. F. J. Moffat that improved portions of the paper, discussions with Paco Najarro and Luc Dessart about spectroscopic modeling of P Cygni, and support of the MIRC 6 telescope beam combiner by Ettore Pedretti. Institutional support has been provided by the GSU College of Arts and Sciences and by the Research Program Enhancement fund of the Board of Regents of the University System of Georgia, administered through the GSU Office of the Vice President for Research. Operational funding for the CHARA Array is provided by the GSU College of Arts and Sciences, by the National Science Foundation through grants AST-0606958 and AST-0908253, by the W. M. Keck Foundation, and by the NASA Exoplanet Science Institute. We thank the Mount Wilson Institute for providing infrastructure support at Mount Wilson Observatory. The CHARA Array, operated by Georgia State University, was built with funding provided by the National Science Foundation, Georgia State University, the W. M. Keck Foundation, and the David and Lucile Packard Foundation. This research was conducted in part using the Mimir instrument, jointly developed at Boston University and Lowell Observatory and supported by NASA, NSF, and the W. M. Keck Foundation. J.D.M. acknowledges University of Michigan and NSF AST-0707927 for support of MIRC construction and observations. D.P.C. acknowledges support under NSF AST-0907790 to Boston University. We gratefully acknowledge all of this support. This research has made use of the SIMBAD database operated at CDS, Strasbourg, France
- …