56 research outputs found

    TiO2-Supported Re as a General and Chemoselective Heterogeneous Catalyst for Hydrogenation of Carboxylic Acids to Alcohols

    Get PDF
    TiO2-supported Re, Re/TiO2, was found to promote selective hydrogenation of carboxylic acids having aromatic and aliphatic moieties to the corresponding alcohols. Re/TiO2 showed superior results compared to other transition-metal-loaded TiO2 and supported Re catalysts for selective hydrogenation of 3-phenylpropionic acid. 3phenylpropanol was produced in 97% yield under mild conditions (5 MPa H-2 at 140 degrees C). Contrary to typical heterogeneous catalysts, Re/TiO2 does not lead to the formation of dearomatized byproducts. The catalyst is recyclable and shows a wide substrate scope in the synthesis of alcohols (22 examples; up to 97% isolated yield)

    One-Pot Selective Catalytic Synthesis of Pyrrolidone Derivatives from Ethyl Levulinate and Nitro Compounds

    Full text link
    This is the peer reviewed version of the following article: Vidal, Juan D, Climent Olmedo, María José, Corma Canós, Avelino, Concepción Heydorn, Patricia, Iborra Chornet, Sara. (2017). One-Pot Selective Catalytic Synthesis of Pyrrolidone Derivatives from Ethyl Levulinate and Nitro Compounds .ChemSusChem, 10, 1, 119-128, which has been published in final form at http://doi.org/10.1002/cssc.201601333. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.[EN] N-substituted 5-methyl-2-pyrrolidones were prepared in a one-pot process starting from ethyl levulinate and nitro compounds in the presence of a nanosized Pt-based catalyst. Pt supported on TiO2 nanotubes (Pt/TiO2-NT) catalyzed the synthesis of N-substituted 5-methyl-2-pyrrolidones through a cascade process involving the reduction of nitro compounds, formation of the intermediary imine, hydrogenation, and subsequent cyclization. A bifunctional metal acid system was a suitable catalyst for the process. Pt supported on TiO2 showed lower catalytic activity than Pt/TiO2-NT owing to the strong adsorption of nitro compounds during the first reaction step that poisoned the acidic sites and strongly decreased the rate of amination and cyclization. However, Pt/TiO2-NT with milder acid sites was less affected by the adsorption of nitro compounds and the full cascade process could proceed. The results indicate that the prepared Pt/TiO2-NT is a chemoselective and reusable catalyst that can be applied to the synthesis of a variety of N-substituted 5-methyl-2-pyrrolidones starting from nitro compounds with excellent yields in absence of an additional organic solvent under mild reaction conditions.Financial support by Consolider-Ingenio 2010 (Project Multicat), Spanish MICINN Project (CTQ-2015-67592-P), Generalitat Valenciana (Prometeo Program) and Program Severo Ochoa is gratefully acknowledged.Vidal, JD.; Climent Olmedo, MJ.; Corma Canós, A.; Concepción Heydorn, P.; Iborra Chornet, S. (2017). One-Pot Selective Catalytic Synthesis of Pyrrolidone Derivatives from Ethyl Levulinate and Nitro Compounds. ChemSusChem. 10(1):119-128. https://doi.org/10.1002/cssc.201601333S119128101Vispute, T. P., Zhang, H., Sanna, A., Xiao, R., & Huber, G. W. (2010). Renewable Chemical Commodity Feedstocks from Integrated Catalytic Processing of Pyrolysis Oils. Science, 330(6008), 1222-1227. doi:10.1126/science.1194218Climent, M. J., Corma, A., & Iborra, S. (2014). Conversion of biomass platform molecules into fuel additives and liquid hydrocarbon fuels. Green Chemistry, 16(2), 516. doi:10.1039/c3gc41492bCorma, A., Iborra, S., & Velty, A. (2007). Chemical Routes for the Transformation of Biomass into Chemicals. Chemical Reviews, 107(6), 2411-2502. doi:10.1021/cr050989dCliment, M. J., Corma, A., & Iborra, S. (2011). Converting carbohydrates to bulk chemicals and fine chemicals over heterogeneous catalysts. Green Chemistry, 13(3), 520. doi:10.1039/c0gc00639dGallezot, P. (2012). Conversion of biomass to selected chemical products. Chem. Soc. Rev., 41(4), 1538-1558. doi:10.1039/c1cs15147aTop Value Added Chemicals from Biomass. Results of Screening for Potential Candidates from Sugars and Synthesis Gas, Vol. 1 2004 http://www.nrel.gov/docs/fy04osti/35523.pdfBozell, J. J., & Petersen, G. R. (2010). Technology development for the production of biobased products from biorefinery carbohydrates—the US Department of Energy’s «Top 10» revisited. Green Chemistry, 12(4), 539. doi:10.1039/b922014cGürbüz, E. I., Alonso, D. M., Bond, J. Q., & Dumesic, J. A. (2011). Reactive Extraction of Levulinate Esters and Conversion to γ-Valerolactone for Production of Liquid Fuels. ChemSusChem, 4(3), 357-361. doi:10.1002/cssc.201000396L. E. Manzer E. I. Du Ponte De Nemours And Company US6743819B1 2004L. E. Manzer US20060247443A1 2006Wei, Y., Wang, C., Jiang, X., Xue, D., Li, J., & Xiao, J. (2013). Highly efficient transformation of levulinic acid into pyrrolidinones by iridium catalysed transfer hydrogenation. Chemical Communications, 49(47), 5408. doi:10.1039/c3cc41661eHuang, Y.-B., Dai, J.-J., Deng, X.-J., Qu, Y.-C., Guo, Q.-X., & Fu, Y. (2011). Ruthenium-Catalyzed Conversion of Levulinic Acid to Pyrrolidines by Reductive Amination. ChemSusChem, 4(11), 1578-1581. doi:10.1002/cssc.201100344Ortiz-Cervantes, C., Flores-Alamo, M., & García, J. J. (2016). Synthesis of pyrrolidones and quinolines from the known biomass feedstock levulinic acid and amines. Tetrahedron Letters, 57(7), 766-771. doi:10.1016/j.tetlet.2016.01.018Du, X.-L., He, L., Zhao, S., Liu, Y.-M., Cao, Y., He, H.-Y., & Fan, K.-N. (2011). Hydrogen-Independent Reductive Transformation of Carbohydrate Biomass into γ-Valerolactone and Pyrrolidone Derivatives with Supported Gold Catalysts. Angewandte Chemie International Edition, 50(34), 7815-7819. doi:10.1002/anie.201100102Du, X.-L., He, L., Zhao, S., Liu, Y.-M., Cao, Y., He, H.-Y., & Fan, K.-N. (2011). Hydrogen-Independent Reductive Transformation of Carbohydrate Biomass into γ-Valerolactone and Pyrrolidone Derivatives with Supported Gold Catalysts. Angewandte Chemie, 123(34), 7961-7965. doi:10.1002/ange.201100102Wei, Y., Wang, C., Jiang, X., Xue, D., Liu, Z.-T., & Xiao, J. (2014). Catalyst-free transformation of levulinic acid into pyrrolidinones with formic acid. Green Chem., 16(3), 1093-1096. doi:10.1039/c3gc42125bLedoux, A., Sandjong Kuigwa, L., Framery, E., & Andrioletti, B. (2015). A highly sustainable route to pyrrolidone derivatives – direct access to biosourced solvents. Green Chem., 17(6), 3251-3254. doi:10.1039/c5gc00417aL. E. Manzer E. I. Du Pont De Nemours And Company US7129362B2 2006L. E. Manzer US20060247444A1 2006Chieffi, G., Braun, M., & Esposito, D. (2015). Continuous Reductive Amination of Biomass-Derived Molecules over Carbonized Filter Paper-Supported FeNi Alloy. ChemSusChem, 8(21), 3590-3594. doi:10.1002/cssc.201500804Touchy, A. S., Hakim Siddiki, S. M. A., Kon, K., & Shimizu, K. (2014). Heterogeneous Pt Catalysts for Reductive Amination of Levulinic Acid to Pyrrolidones. ACS Catalysis, 4(9), 3045-3050. doi:10.1021/cs500757kVidal, J. D., Climent, M. J., Concepcion, P., Corma, A., Iborra, S., & Sabater, M. J. (2015). Chemicals from Biomass: Chemoselective Reductive Amination of Ethyl Levulinate with Amines. ACS Catalysis, 5(10), 5812-5821. doi:10.1021/acscatal.5b01113ChemCatChem 2016 10.1002/cctc.201600739Climent, M. J., Corma, A., & Iborra, S. (2011). Heterogeneous Catalysts for the One-Pot Synthesis of Chemicals and Fine Chemicals. Chemical Reviews, 111(2), 1072-1133. doi:10.1021/cr1002084José Climent, M., Corma, A., & Iborra, S. (2012). Homogeneous and heterogeneous catalysts for multicomponent reactions. RSC Adv., 2(1), 16-58. doi:10.1039/c1ra00807bYoshida, H., Igarashi, N., Fujita, S., Panpranot, J., & Arai, M. (2014). Influence of Crystallite Size of TiO2 Supports on the Activity of Dispersed Pt Catalysts in Liquid-Phase Selective Hydrogenation of 3-Nitrostyrene, Nitrobenzene, and Styrene. Catalysis Letters, 145(2), 606-611. doi:10.1007/s10562-014-1404-4L. E. Manzer E. I. Du Pont De Nemours And Company US6855731B2 2005L. E. Manzer E. I. Du Pont De Nemours And Company US6818593B2 2004Yang, X., Yu, X., Long, L., Wang, T., Ma, L., Wu, L., … Liao, S. (2014). Pt nanoparticles entrapped in titanate nanotubes (TNT) for phenol hydrogenation: the confinement effect of TNT. Chemical Communications, 50(21), 2794. doi:10.1039/c3cc49331hHsu, C.-Y., Chiu, T.-C., Shih, M.-H., Tsai, W.-J., Chen, W.-Y., & Lin, C.-H. (2010). Effect of Electron Density of Pt Catalysts Supported on Alkali Titanate Nanotubes in Cinnamaldehyde Hydrogenation. The Journal of Physical Chemistry C, 114(10), 4502-4510. doi:10.1021/jp9095198Chiu, T.-C., Lee, H.-Y., Li, P.-H., Chao, J.-H., & Lin, C.-H. (2013). Effects of interfacial charge and the particle size of titanate nanotube-supported Pt nanoparticles on the hydrogenation of cinnamaldehyde. Nanotechnology, 24(11), 115601. doi:10.1088/0957-4484/24/11/115601Zhu, B., Li, K., Wang, S., Zhang, S., Wu, S., & Huang, W. (2008). Influences of the H2PtCl6Solution’s pH on the Photocatalytic Activities of Platinum-Loaded TiO2Nanotubes. Journal of Dispersion Science and Technology, 29(10), 1408-1411. doi:10.1080/01932690802313311XIAO-JING, H., BAO-LIN, Z., JIAN-XUN, D., WEI-LING, Z., SHU-RONG, W., SHOU-MIN, Z., & WEI-PING, H. (2012). THE INFLUENCE OF PLATINUM ON THE STRUCTURE AND PHOTOCATALYTIC PERFORMANCE OF HYDROGEN TITANATE NANOTUBES. Journal of the Chilean Chemical Society, 57(1), 1008-1011. doi:10.4067/s0717-97072012000100012Kubo, T., Nagata, H., Takeuchi, M., Matsuoka, M., Anpo, M., & Nakahira, A. (2008). Structural evaluation and photocatalytic properties of Pt-supported titanate nanotubes. Research on Chemical Intermediates, 34(4), 339-346. doi:10.1163/156856708784040605Hadjiivanov, K. I. (1998). IR study of CO and H2O coadsorption on Ptn+/TiO2 and Pt/TiO2 samples. Journal of the Chemical Society, Faraday Transactions, 94(13), 1901-1904. doi:10.1039/a801892hShen, S., Wang, X., Ding, Q., Jin, S., Feng, Z., & Li, C. (2014). Effect of Pt cocatalyst in Pt/TiO2 studied by in situ FTIR of CO adsorption. Chinese Journal of Catalysis, 35(11), 1900-1906. doi:10.1016/s1872-2067(14)60172-8Greenler, R. G., Burch, K. D., Kretzschmar, K., Klauser, R., Bradshaw, A. M., & Hayden, B. E. (1985). Stepped single-crystal surfaces as models for small catalyst particles. Surface Science, 152-153, 338-345. doi:10.1016/0039-6028(85)90163-3Jiang, F., Zeng, L., Li, S., Liu, G., Wang, S., & Gong, J. (2014). Propane Dehydrogenation over Pt/TiO2–Al2O3 Catalysts. ACS Catalysis, 5(1), 438-447. doi:10.1021/cs501279vSerna, P., López-Haro, M., Calvino, J. J., & Corma, A. (2009). Selective hydrogenation of nitrocyclohexane to cyclohexanone oxime with H2 on decorated Pt nanoparticles. Journal of Catalysis, 263(2), 328-334. doi:10.1016/j.jcat.2009.02.025Climent, M. J., Corma, A., Iborra, S., & Santos, L. L. (2009). Multisite Solid Catalyst for Cascade Reactions: The Direct Synthesis of Benzodiazepines from Nitro Compounds. Chemistry - A European Journal, 15(35), 8834-8841. doi:10.1002/chem.200900492Climent, M. J., Corma, A., Iborra, S., & Martí, L. (2014). Process Intensification with Bifunctional Heterogeneous Catalysts: Selective One-Pot Synthesis of 2′-Aminochalcones. ACS Catalysis, 5(1), 157-166. doi:10.1021/cs5011713Corma, A., Concepción, P., & Serna, P. (2007). A Different Reaction Pathway for the Reduction of Aromatic Nitro Compounds on Gold Catalysts. Angewandte Chemie International Edition, 46(38), 7266-7269. doi:10.1002/anie.200700823Corma, A., Concepción, P., & Serna, P. (2007). A Different Reaction Pathway for the Reduction of Aromatic Nitro Compounds on Gold Catalysts. Angewandte Chemie, 119(38), 7404-7407. doi:10.1002/ange.200700823Corma, A., Serna, P., Concepción, P., & Calvino, J. J. (2008). Transforming Nonselective into Chemoselective Metal Catalysts for the Hydrogenation of Substituted Nitroaromatics. Journal of the American Chemical Society, 130(27), 8748-8753. doi:10.1021/ja800959gKasuga, T., Hiramatsu, M., Hoson, A., Sekino, T., & Niihara, K. (1998). Formation of Titanium Oxide Nanotube. Langmuir, 14(12), 3160-3163. doi:10.1021/la971381

    Genome-wide association study for systemic lupus erythematosus in an egyptian population

    Get PDF
    Systemic lupus erythematosus (SLE) susceptibility has a strong genetic component. Genome-wide association studies (GWAS) across trans-ancestral populations show both common and distinct genetic variants of susceptibility across European and Asian ancestries, while many other ethnic populations remain underexplored. We conducted the first SLE GWAS on Egyptians–an admixed North African/Middle Eastern population–using 537 patients and 883 controls. To identify novel susceptibility loci and replicate previously known loci, we performed imputation-based association analysis with 6,382,276 SNPs while accounting for individual admixture. We validated the association analysis using adaptive permutation tests (n = 109). We identified a novel genome-wide significant locus near IRS1/miR-5702 (Pcorrected = 1.98 × 10−8) and eight novel suggestive loci (Pcorrected 0.8) with lead SNPs from four suggestive loci (ARMC9, DIAPH3, IFLDT1, and ENTPD3) were associated with differential gene expression (3.5 × 10−95 < p < 1.0 × 10−2) across diverse tissues. These loci are involved in cellular proliferation and invasion—pathways prominent in lupus and nephritis. Our study highlights the utility of GWAS in an admixed Egyptian population for delineating new genetic associations and for understanding SLE pathogenesis

    Sur Quelques Modes D\u27hypertrophie Chez Les V\ue9g\ue9taux

    No full text
    Volume: 4Start Page: 649End Page: 65

    Auf Erfahrung gegründete Unterweisung wie Gutsbesizzer, Pachter und Landleute ihre Haus- und Feldwirthschaft besser benuzzen und wohlhabender und reicher werden können : In drei Theilen

    No full text
    [Ferdinand Christian Touchy]Vorlageform der Veröffentlichungsangabe: Leipzig in Commission in der Sommerschen Buchhandlung
    corecore