14 research outputs found

    Operational Research: methods and applications

    Get PDF
    This is the final version. Available on open access from Taylor & Francis via the DOI in this recordThroughout its history, Operational Research has evolved to include methods, models and algorithms that have been applied to a wide range of contexts. This encyclopedic article consists of two main sections: methods and applications. The first summarises the up-to-date knowledge and provides an overview of the state-of-the-art methods and key developments in the various subdomains of the field. The second offers a wide-ranging list of areas where Operational Research has been applied. The article is meant to be read in a nonlinear fashion and used as a point of reference by a diverse pool of readers: academics, researchers, students, and practitioners. The entries within the methods and applications sections are presented in alphabetical order. The authors dedicate this paper to the 2023 Turkey/Syria earthquake victims. We sincerely hope that advances in OR will play a role towards minimising the pain and suffering caused by this and future catastrophes

    Integrating Constraint Logic Programming and Operations Research Techniques for the Crew Rostering Problem

    No full text
    In this paper, we investigate the possibility of integrating Artificial Intelligence (AI) and Operations Research (OR) techniques for solving the Crew Rostering Problem (CRP). CRP calls for the optimal sequencing of a given set of duties into rosters satisfying a set of constraints. The optimality criterion requires the minimization of the number of crews needed to cover the duties. This kind of problem has been traditionally solved with OR techniques. In recent years, a new programming paradigm based on Logic Programming, named Constraint Logic Programming (CLP), has been successfully used for solving hard combinatorial optimization problems. CLP maintains all the advantages of Logic Programming such as declarativeness, non-determinism and an incremental style of programming, while overcoming its limitations, mainly due to the inefficiency in exploring the search space. CLP achieves good results on hard combinatorial optimization problems which, however, are not comparable with those ..

    An Empirical Framework for Understanding Human-Technology Interaction Optimisation for Route Planning

    No full text
    A number of interactive systems have been developed in the past to simulate or improve optimised route planning as part of problem solving (e.g. Vehicle Routing Problems (VRPs)) focussing mainly in the utilisation of computational algorithms. Main reasons for developing such interactive systems is that they combine the strengths both computerised systems and humans have, to aid the generation of optimal solutions and promote green logistics. Under a joint-cognitive perspective, the system and the human operator (user) become parts of a single ecosystem, co-operating to complete a task and in which cognitive technologies aid them to reach a decision. This paper reports the performance-based design of such an interactive tool that supports optimisation in route planning. It aims to identify human performance, behaviour and opportunities for designing innovative usercentred interactive optimisation tools for route planning. Twenty-six users evaluated the interactive route planner. Results suggest that switching strategies while planning routes lead to increase in route optimality while providing different levels of control for the user. Results lead to the extension of a joint-cognitive approach framework for optimisation routing problems that takes into account both performance metrics and contextual factors such as changes within the task environment. Related implications to optimisation systems’ design and evaluation are also discussed with a particular focus on how new ubiquitous navigation technologies can be improved to promote cooperation and more optimal route planning

    Operational research : methods and applications

    Get PDF
    Throughout its history, Operational Research has evolved to include a variety of methods, models and algorithms that have been applied to a diverse and wide range of contexts. This encyclopedic article consists of two main sections: methods and applications. The first aims to summarise the up-to-date knowledge and provide an overview of the state-of-the-art methods and key developments in the various subdomains of the field. The second offers a wide-ranging list of areas where Operational Research has been applied. The article is meant to be read in a nonlinear fashion. It should be used as a point of reference or first-port-of-call for a diverse pool of readers: academics, researchers, students, and practitioners. The entries within the methods and applications sections are presented in alphabetical order
    corecore