44 research outputs found

    Biological and Pathological Studies of Rosmarinic Acid as an Inhibitor of Hemorrhagic Trimeresurus flavoviridis (habu) Venom

    Get PDF
    In our previous report, rosmarinic acid (RA) was revealed to be an antidote active compound in Argusia argentea (family: Boraginaceae). The plant is locally used in Okinawa in Japan as an antidote for poisoning from snake venom, Trimeresurus flavoviridis (habu). This article presents mechanistic evidence of RA’s neutralization of the hemorrhagic effects of snake venom. Anti-hemorrhagic activity was assayed by using several kinds of snake venom. Inhibition against fibrinogen hydrolytic and collagen hydrolytic activities of T. flavoviridis venom were examined by SDS-PAGE. A histopathological study was done by microscopy after administration of venom in the presence or absence of RA. RA was found to markedly neutralize venom-induced hemorrhage, fibrinogenolysis, cytotoxicity and digestion of type IV collagen activity. Moreover, RA inhibited both hemorrhage and neutrophil infiltrations caused by T. flavoviridis venom in pathology sections. These results demonstrate that RA inhibited most of the hemorrhage effects of venom. These findings indicate that rosmarinic acid can be expected to provide therapeutic benefits in neutralization of snake venom accompanied by heat stability

    Isolation and Chemical Characterization of a Toxin Isolated from the Venom of the Sea Snake, Hydrophis torquatus aagardi

    Get PDF
    Sea snakes (family: Hydrophiidae) are serpents found in the coastal areas of the Indian and Pacific Oceans. There are two subfamilies in Hydrophiidae: Hydrophiinae and Laticaudinae. A toxin, aagardi toxin, was isolated from the venom of the Hydrophiinae snake, Hydrophis torquatus aagardi and its chemical properties such as molecular weight, isoelectric point, importance of disulfide bonds, lack of enzymatic activity and amino acid sequence were determined. The amino acid sequence indicated a close relationship to the primary structure of other Hydrophiinae toxins and a significant difference from Laticaudinae toxins, confirming that primary toxin structure is closely related to sea snake phylogenecity

    Comparison of Sea Snake (Hydrophiidae) Neurotoxin to Cobra (Naja) Neurotoxin

    Get PDF
    Both sea snakes and cobras have venoms containing postsynaptic neurotoxins. Comparison of the primary structures indicates many similarities, especially the positions of the four disulfide bonds. However, detailed examination reveals differences in several amino acid residues. Amino acid sequences of sea snake neurotoxins were determined, and then compared to cobra neurotoxins by computer modeling. This allowed for easy comparison of the similarities and differences between the two types of postsynaptic neurotoxins. Comparison of computer models for the toxins of sea snakes and cobra will reveal the three dimensional difference of the toxins much clearer than the amino acid sequence alone

    Isolation and Biochemical Characterization of Rubelase, a Non-Hemorrhagic Elastase from Crotalus ruber ruber (Red Rattlesnake) Venom

    Get PDF
    A novel non-hemorrhagic basic metalloprotease, rubelase, was isolated from the venom of Crotalus ruber ruber. Rubelase hydrolyzes succinyl-L-alanyl-L-alanyl-L-alanyl p-nitroanilide (STANA), a specific substrate for elastase, and the hydrolytic activity was inhibited by chelating agents. It also hydrolyzes collagen and fibrinogen. However, hemorrhagic activity was not observed. By ESI/Q-TOF and MALDI/TOF mass spectrometry combined with Edman sequencing procedure, the molecular mass of rubelase was determined to be 23,266 Da. Although its primary structure was similar to rubelysin (HT-2), a hemorrhagic metalloprotease isolated from the same snake venom, the circumstances surrounding putative zinc binding domain HEXXHXXGXXH were found to be different when the three-dimensional computer models of both metalloproteases were compared. The cytotoxic effects of rubelase and rubelysin on cultured endothelial and smooth muscle cells were also different, indicating that the substitution of several amino acid residues causes the changes of active-site conformation and cell preference

    Measurements of top-quark pair differential cross-sections in the eμe\mu channel in pppp collisions at s=13\sqrt{s} = 13 TeV using the ATLAS detector

    Get PDF

    Measurement of the W boson polarisation in ttˉt\bar{t} events from pp collisions at s\sqrt{s} = 8 TeV in the lepton + jets channel with ATLAS

    Get PDF

    Measurement of jet fragmentation in Pb+Pb and pppp collisions at sNN=2.76\sqrt{{s_\mathrm{NN}}} = 2.76 TeV with the ATLAS detector at the LHC

    Get PDF

    Search for new phenomena in events containing a same-flavour opposite-sign dilepton pair, jets, and large missing transverse momentum in s=\sqrt{s}= 13 pppp collisions with the ATLAS detector

    Get PDF
    corecore