235 research outputs found

    Internal Rotation of Disilane and Related Molecules:a Density Functional Study

    Full text link
    DFT calculations performed on Si_2H_6, Si_2F_6, Si_2Cl_6, and Si_2Br_6 are reported. The evolution of the energy, the chemical potential and the molecular hardness, as a function of torsion angle, is studied. Results at the DFT-B3LYP/6-311++G** level show that the molecules always favor the stable staggered conformations, with low but significant energy barriers that hinder internal rotation. The chemical potential and hardness of Si_2H_6 remains quite constant as the sylil groups rotate around the Si-Si axis, whereas the other systems exhibit different degrees of rearrangement of the electronic density as a function of the torsion angle. A qualitative analysis of the frontier orbitals shows that the effect of torsional motion on electrophilic attack is negligible, whereas this internal rotation may generate different specific mechanisms for nucleophilic attack.Comment: LATeX file, 7 figures, uses elsart.cls, natbib, graphic

    Accelerating Universe from an Evolving Lambda in Higher Dimension

    Full text link
    We find exact solutions in five dimensional inhomogeneous matter dominated model with a varying cosmological constant. Adjusting arbitrary constants of integration one can also achieve acceleration in our model. Aside from an initial singularity our spacetime is regular everywhere including the centre of the inhomogeneous distribution. We also study the analogous homogeneous universe in (4+d) dimensions. Here an initially decelerating model is found to give late acceleration in conformity with the current observational demands. We also find that both anisotropy and number of dimensions have a role to play in determining the time of flip, in fact the flip is delayed in multidimensional models. Some astrophysical parameters like the age, luminosity distance etc are also calculated and the influence of extra dimensions is briefly discussed. Interestingly our model yields a larger age of the universe compared to many other quintessential models.Comment: 18 pages, 9 figure

    Isolation and fine mapping of Rps6: An intermediate host resistance gene in barley to wheat stripe rust

    Get PDF
    A plant may be considered a nonhost of a pathogen if all known genotypes of a plant species are resistant to all known isolates of a pathogen species. However, if a small number of genotypes are susceptible to some known isolates of a pathogen species this plant maybe considered an intermediate host. Barley (Hordeum vulgare) is an intermediate host for Puccinia striiformis f. sp. tritici (Pst), the causal agent of wheat stripe rust. We wanted to understand the genetic architecture underlying resistance to Pst and to determine whether any overlap exists with resistance to the host pathogen, Puccinia striiformis f. sp. hordei (Psh). We mapped Pst resistance to chromosome 7H and show that host and intermediate host resistance is genetically uncoupled. Therefore, we designate this resistance locus Rps6. We used phenotypic and genotypic selection on F2:3 families to isolate Rps6 and fine mapped the locus to a 0.1 cM region. Anchoring of the Rps6 locus to the barley physical map placed the region on two adjacent fingerprinted contigs. Efforts are now underway to sequence the minimal tiling path and to delimit the physical region harbouring Rps6. This will facilitate additional marker development and permit identification of candidate genes in the region

    The Sacred Geography of Dawei: Buddhism in peninsular Myanmar (Burma)

    Get PDF
    The paper opens by recounting the beginnings of Buddhism in Dawei as preserved in local chronicles and sustained in stupas marking the episodes of the chronicle narrative. The chronicles start with a visit of the Buddha whose arrival triggers a series of events bringing together pre-existing tutelary figures, weiza, a hermit and offspring born of a golden fish, culminating in the establishment of the first Buddhist kingdom circa the eighth to tenth century CE. The enshrinement of sacred hairs gifted by the Buddha also includes patronage by a king of the ‘Suvannbhumi’ lineage. Associated with the monks Sona and Uttara from Sri Lanka sent by King Asoka’s son Mahinda, ‘Suvannbhumi’ literally can refer to the archaeology of Thaton, a walled site in the present day Mon State, or, as is the case here, more widely to the missionary tradition associated with Asoka (Sao Saimong Mengrai 1976). The third story in the establishment of the Buddhist king at Thagara is the longest of the chronicle, the tale of a royal hunter who failed to capture a golden peacock for the queen. The hunter became a hermit living by a pond with a golden fish and as he urinated in the pond, two children were born from the fish. The boy becomes the first Buddhist king of Thagara, 11 km north of Dawei, where artefacts from survey and excavation confirm the chronology of the chronicle, with the closest archaeological parallels found not at the ancient sites of the Mon State but to the first millennium CE Buddhist ‘Pyu’ heritage of Upper Myanmar which is notably absent in the chronicle compilation

    Magnetic Reconnection Triggered by the Parker Instability in the Galaxy: Two-Dimensional Numerical Magnetohydrodynamic Simulations and Application to the Origin of X-Ray Gas in the Galactic Halo

    Full text link
    We propose the Galactic flare model for the origin of the X-ray gas in the Galactic halo. For this purpose, we examine the magnetic reconnection triggered by Parker instability (magnetic buoyancy instability), by performing the two-dimensional resistive numerical magnetohydrodynamic simulations. As a result of numerical simulations, the system evolves as following phases: Parker instability occurs in the Galactic disk. In the nonlinear phase of Parker instability, the magnetic loop inflates from the Galactic disk into the Galactic halo, and collides with the anti-parallel magnetic field, so that the current sheets are created in the Galactic halo. The tearing instability occurs, and creates the plasmoids (magnetic islands). Just after the plasmoid ejection, further current-sheet thinning occurs in the sheet, and the anomalous resistivity sets in. Petschek reconnection starts, and heats the gas quickly in the Galactic halo. It also creates the slow and fast shock regions in the Galactic halo. The magnetic field (B∌3ÎŒB\sim 3 \muG), for example, can heat the gas (n∌10−3n\sim 10^{-3} cm−3^{-3}) to temperature of ∌106\sim 10^6 K via the reconnection in the Galactic halo. The gas is accelerated to Alfv\'en velocity (∌300\sim 300 km s−1^{-1}). Such high velocity jets are the evidence of the Galactic flare model we present in this paper, if the Doppler shift of the bipolar jet is detected in the Galactic halo. Full size figures are available at http://www.kwasan.kyoto-u.ac.jp/~tanuma/study/ApJ2002/ApJ2002.htmlComment: 13 pages, 12 figures, uses emulateapj.sty, accepted by Ap
    • 

    corecore