262 research outputs found

    Constraining neutrino magnetic moment with solar and reactor neutrino data

    Full text link
    We use solar neutrino data to derive stringent bounds on Majorana neutrino transition moments (TMs). Such moments, if present, would contribute to the neutrino-electron scattering cross section and hence alter the signal observed in Super-Kamiokande. Using the latest solar neutrino data, combined with the results of the reactor experiment KamLAND, we perform a simultaneous fit of the oscillation parameters and TMs. Furthermore, we include data from the reactor experiments Rovno, TEXONO and MUNU in our analysis, improving significantly the current constraints on TMs. A comparison with previous works shows that our bounds are the strongest and most general results presented up to now. Finally, we perform a simulation of the future Borexino experiment and show that it will improve the bounds from today's data by order of magnitude.Comment: 12 pages, LaTeX file using JHEP3, 4 figures and 1 table included. Talk presented at the International Workshop on Astroparticle and High Energy Physics (AHEP-2003), Valencia, Spain, 14-18 October 200

    Status of three-neutrino oscillations after the SNO-salt data

    Get PDF
    We perform a global analysis of neutrino oscillation data in the framework of three neutrinos, including the recent improved measurement of the neutral current events at SNO. In addition to all current solar neutrino data we take into account the reactor neutrino data from KamLAND and CHOOZ, the atmospheric neutrino data from Super-Kamiokande and MACRO, as well as the first spectral data from the K2K long baseline accelerator experiment. The up-to-date best fit values and allowed ranges of the three-flavour oscillation parameters are determined from these data. Furthermore, we discuss in detail the status of the small parameters alpha = Delta_m^2_Sol / Delta_m^2_Atm and sin^2(theta_13), which fix the possible strength of CP violating effects in neutrino oscillations.Comment: 16 pages, LaTeX file using RevTEX4, 10 figures and 1 table included. The conclusions reached in version 1 regarding the restriction on sin^2(theta_13) are now corrected, the solar bound is weaker than that from reactors even after the inclusion of the SNO salt data. In addition the full data set has now been reanalized using the pull method instead of the standard chi-square approach. A few references have also been adde

    Status of neutrino oscillations 2018: first hint for normal mass ordering and improved CP sensitivity

    Full text link
    We present a new global fit of neutrino oscillation parameters within the simplest three-neutrino picture, including new data which appeared since our previous analysis~\cite{Forero:2014bxa}. In this update we include new long-baseline neutrino data involving the antineutrino channel in T2K, as well as new data in the neutrino channel, data from NOν\nuA, as well as new reactor data, such as the Daya Bay 1230 days electron antineutrino disappearance spectrum data and the 1500 live days prompt spectrum from RENO, as well as new Double Chooz data. We also include atmospheric neutrino data from the IceCube DeepCore and ANTARES neutrino telescopes and from Super-Kamiokande. Finally, we also update our solar oscillation analysis by including the 2055-day day/night spectrum from the fourth phase of the Super-Kamiokande experiment. With the new data we find a preference for the atmospheric angle in the upper octant for both neutrino mass orderings, with maximal mixing allowed at Δχ2=1.6(3.2)\Delta\chi^2 = 1.6 \, (3.2) for normal (inverted) ordering. We also obtain a strong preference for values of the CP phase δ\delta in the range [π,2π][\pi,2\pi], excluding values close to π/2\pi/2 at more than 4σ\sigma. More remarkably, our global analysis shows for the first time hints in favour of the normal mass ordering over the inverted one at more than 3σ\sigma. We discuss in detail the origin of the mass ordering, CP violation and octant sensitivities, analyzing the interplay among the different neutrino data samples.Comment: Updated neutrino oscillation analysis using the most recent results from T2K, NOν\nuA, RENO and Super-Kamiokande. 17 pages, 8 figures, 1 tabl

    Non-standard neutrino oscillations: perspective from unitarity triangles

    Full text link
    We formulate an alternative approach based on unitarity triangles to describe neutrino oscillations in presence of non-standard interactions (NSI). Using perturbation theory, we derive the expression for the oscillation probability in case of NSI and cast it in terms of the three independent parameters of the leptonic unitarity triangle (LUT). The form invariance of the probability expression (even in presence of new physics scenario as long as the mixing matrix is unitary) facilitates a neat geometric view of neutrino oscillations in terms of LUT. We examine the regime of validity of perturbative expansions in the NSI case and make comparisons with approximate expressions existing in literature. We uncover some interesting dependencies on NSI terms while studying the evolution of LUT parameters and the Jarlskog invariant. Interestingly, the geometric approach based on LUT allows us to express the oscillation probabilities for a given pair of neutrino flavours in terms of only three (and not four) degrees of freedom which are related to the geometric properties (sides and angles) of the triangle. Moreover, the LUT parameters are invariant under rephasing transformations and independent of the parameterization adopted.Comment: 21 pages, 7 figure

    Probing Low Energy Neutrino Backgrounds with Neutrino Capture on Beta Decaying Nuclei

    Get PDF
    We study the interaction of low energy neutrinos on nuclei that spontaneously undergo beta decay showing that the product of the cross section times neutrino velocity takes values as high as 10^{-42} cm^2 c for some specific nuclei that decay via allowed transitions. The absence of energy threshold and the value of the cross section single out these processes as a promising though very demanding approach for future experiments aimed at a direct detection of low energy neutrino backgrounds such as the cosmological relic neutrinos.Comment: Includes a discussion of local relic neutrino density effect on neutrino capture rate. Accepted for publication in JCA

    Sterile neutrinos with altered dispersion relations revisited

    Get PDF
    In this paper we investigate neutrino oscillations with altered dispersion relations in the presence of sterile neutrinos. Modified dispersion relations represent an agnostic way to parameterize new physics. Models of this type have been suggested to explain global neutrino oscillation data, including deviations from the standard three-neutrino paradigm as observed by a few experiments. We show that, unfortunately, in this type of models new tensions arise turning them incompatible with global data.Comment: 22 pages, 7 figures, 2 tables. Version 2, matches published versio

    Solar neutrino-electron scattering as background limitation for double beta decay

    Full text link
    The background on double beta decay searches due to elastic electron scattering of solar neutrinos of all double beta emitters with Q-value larger than 2 MeV is calculated, taking into account survival probability and flux uncertainties of solar neutrinos. This work determines the background level to be [1-2]E-7 counts /keV/kg/yr, depending on the precise Q-value of the double beta emitter. It is also shown that the background level increases dramatically if going to lower Q-values. Furthermore, studies are done for various detector systems under consideration for next generation experiments. It was found that experiments based on loaded liquid scintillator have to expect a higher background. Within the given nuclear matrix element uncertainties any approach exploring the normal hierarchy has to face this irreducible background, which is a limitation on the minimal achievable background for purely calorimetric approaches. Large scale liquid scintillator experiments might encounter this problem already while exploring the inverted hierarchy. Potential caveats by using more sophisticated experimental setups are also discussed

    Neutrino-less Double Beta Decay and Particle Physics

    Full text link
    We review the particle physics aspects of neutrino-less double beta decay. This process can be mediated by light massive Majorana neutrinos (standard interpretation) or by something else (non-standard interpretations). The physics potential of both interpretations is summarized and the consequences of future measurements or improved limits on the half-life of neutrino-less double beta decay are discussed. We try to cover all proposed alternative realizations of the decay, including light sterile neutrinos, supersymmetric or left-right symmetric theories, Majorons, and other exotic possibilities. Ways to distinguish the mechanisms from one another are discussed. Experimental and nuclear physics aspects are also briefly touched, alternative processes to double beta decay are discussed, and an extensive list of references is provided.Comment: 96 pages, 38 figures. Published versio
    corecore