63 research outputs found

    Characterization of three types of silicon solar cells for SEPS Deep Space Mission. Volume 3: Current-voltage characteristics of spectrolab sculptured BSR/P+ (K7), BSR/P+ (K6.5) and BSR (K4.5) cells as a function of temperature and intensity

    Get PDF
    Three types of high performance silicon solar cells, sculptured BSR/P+(K7), BSR/P+(K6.5) and BSR(K4.5) manufactured by Spectrolab were evaluated for their low temperature and low intensity performance. Sixteen cells of each type were subjected to 11 temperatures and 9 intensities. The sculptured BSR/P+(K7) cells provided the greatest maximum power output both at 1 AU and at LTLI conditions. The average efficiencies of this cell were 14.4 percent at 1 SC/+25 deg C and 18.5 percent at 0.086 SC/-100 deg C

    LD-Spline: Mapping SNPs on genotyping platforms to genomic regions using patterns of linkage disequilibrium

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Gene-centric analysis tools for genome-wide association study data are being developed both to annotate single locus statistics and to prioritize or group single nucleotide polymorphisms (SNPs) prior to analysis. These approaches require knowledge about the relationships between SNPs on a genotyping platform and genes in the human genome. SNPs in the genome can represent broader genomic regions via linkage disequilibrium (LD), and population-specific patterns of LD can be exploited to generate a data-driven map of SNPs to genes.</p> <p>Methods</p> <p>In this study, we implemented LD-Spline, a database routine that defines the genomic boundaries a particular SNP represents using linkage disequilibrium statistics from the International HapMap Project. We compared the LD-Spline haplotype block partitioning approach to that of the four gamete rule and the Gabriel et al. approach using simulated data; in addition, we processed two commonly used genome-wide association study platforms.</p> <p>Results</p> <p>We illustrate that LD-Spline performs comparably to the four-gamete rule and the Gabriel et al. approach; however as a SNP-centric approach LD-Spline has the added benefit of systematically identifying a genomic boundary for each SNP, where the global block partitioning approaches may falter due to sampling variation in LD statistics.</p> <p>Conclusion</p> <p>LD-Spline is an integrated database routine that quickly and effectively defines the genomic region marked by a SNP using linkage disequilibrium, with a SNP-centric block definition algorithm.</p

    Platelet-Related Variants Identified by Exomechip Meta-analysis in 157,293 Individuals

    Get PDF
    Platelet production, maintenance, and clearance are tightly controlled processes indicative of platelets important roles in hemostasis and thrombosis. Platelets are common targets for primary and secondary prevention of several conditions. They are monitored clinically by complete blood counts, specifically with measurements of platelet count (PLT) and mean platelet volume (MPV). Identifying genetic effects on PLT and MPV can provide mechanistic insights into platelet biology and their role in disease. Therefore, we formed the Blood Cell Consortium (BCX) to perform a large-scale meta-analysis of Exomechip association results for PLT and MPV in 157,293 and 57,617 individuals, respectively. Using the low-frequency/rare coding variant-enriched Exomechip genotyping array, we sought to identify genetic variants associated with PLT and MPV. In addition to confirming 47 known PLT and 20 known MPV associations, we identified 32 PLT and 18 MPV associations not previously observed in the literature across the allele frequency spectrum, including rare large effect (FCER1A), low-frequency (IQGAP2, MAP1A, LY75), and common (ZMIZ2, SMG6, PEAR1, ARFGAP3/PACSIN2) variants. Several variants associated with PLT/MPV (PEAR1, MRVI1, PTGES3) were also associated with platelet reactivity. In concurrent BCX analyses, there was overlap of platelet-associated variants with red (MAP1A, TMPRSS6, ZMIZ2) and white (PEAR1, ZMIZ2, LY75) blood cell traits, suggesting common regulatory pathways with shared genetic architecture among these hematopoietic lineages. Our large-scale Exomechip analyses identified previously undocumented associations with platelet traits and further indicate that several complex quantitative hematological, lipid, and cardiovascular traits share genetic factors

    Large-scale exome-wide association analysis identifies loci for White Blood Cell Traits and Pleiotropy with Immune-Mediated Diseases

    Get PDF
    White blood cells play diverse roles in innate and adaptive immunity. Genetic association analyses of phenotypic variation in circulating white blood cell (WBC) counts from large samples of otherwise healthy individuals can provide insights into genes and biologic pathways involved in production, differentiation, or clearance of particular WBC lineages (myeloid, lymphoid) and also potentially inform the genetic basis of autoimmune, allergic, and blood diseases. We performed an exome array-based meta-analysis of total WBC and subtype counts (neutrophils, monocytes, lymphocytes, basophils, and eosinophils) in a multi-ancestry discovery and replication sample of ∼157,622 individuals from 25 studies. We identified 16 common variants (8 of which were coding variants) associated with one or more WBC traits, the majority of which are pleiotropically associated with autoimmune diseases. Based on functional annotation, these loci included genes encoding surface markers of myeloid, lymphoid, or hematopoietic stem cell differentiation (CD69, CD33, CD87), transcription factors regulating lineage specification during hematopoiesis (ASXL1, IRF8, IKZF1, JMJD1C, ETS2-PSMG1), and molecules involved in neutrophil clearance/apoptosis (C10orf54, LTA), adhesion (TNXB), or centrosome and microtubule structure/function (KIF9, TUBD1). Together with recent reports of somatic ASXL1 mutations among individuals with idiopathic cytopenias or clonal hematopoiesis of undetermined significance, the identification of a common regulatory 3 UTR variant of ASXL1 suggests that both germline and somatic ASXL1 mutations contribute to lower blood counts in otherwise asymptomatic individuals. These association results shed light on genetic mechanisms that regulate circulating WBC counts and suggest a prominent shared genetic architecture with inflammatory and autoimmune diseases

    Kinetic compartment modeling of [11C]-5-hydroxy-L-tryptophan for positron emission tomography assessment of serotonin synthesis in human brain

    No full text
    The substrate for the second enzymatic step in serotonin synthesis, 5-hydroxy-L-tryptophan, labeled in the beta-position ([11C]-HTP), was used for positron emission tomography (PET) measurements in six healthy human participants, examined on two occasions. One- and two-tissue kinetic compartment modeling of time-radioactivity curves was performed, using arterial, metabolite-corrected [11C]-HTP values as input function. The availability of unchanged tracer in arterial blood plasma was > or = 80% up to 60 minutes after injection, while [11C]-hydroxyindole acetic acid and [11C]-serotonin accounted for the remaining radioactivity, amounting to < or = 16% and < or = 4%, respectively. Compartment modeling was performed for brain stem, putamen, caudate nucleus, anterior cingulate, white matter, and superior occipital, occipitotemporal, and temporal cortices. The average biologic half-life for plasma-to-tissue equilibrium was 7 to 12 minutes, and the volume of distribution was 0.2 to 0.5 microL.mL(-1). In all regions except white matter, the kinetic compartment model that included irreversible [11C]-HTP trapping showed significantly improved model fits with respect to a one-tissue compartment model. The [11C]-HTP trapping rate constant depended on the estimated tissue availability of the serotonin precursor tryptophan, known to reflect serotonin synthesis in healthy individuals, and correlated with serotonin tissue concentration and synthesis rates reported previously in literature. These findings suggest the use of [11C]-HTP PET measurements to investigate serotonin synthesis

    Validation studies on the 5-hydroxy-L-[β-11C]-tryptophan/PET method for probing the decarboxylase step in serotonin synthesis

    No full text
    The two-tissue compartment model, including irreversible trapping in the second compartment (2TCM) is used to describe the kinetics of 5-Hydroxy-L-[β-11C]-tryptophan ([11C]HTP), a radioligand used in positron emission tomography (PET) for probing the second enzymatic step in the biosynthesis of serotonin. In this study, we examined the capacity of the model to track pharmacological changes in this biological process. We also investigated the potential loss of [11C]HTP-derived radioactivity during a PET study, since loss should be negligible not to alter quantification. Six rhesus monkeys were investigated using bolus [11C]HTP/PET methodology before and after pharmacological intervention. The second enzymatic step in serotonin synthesis was inhibited using the aromatic L-amino acid decarboxylase inhibitor NSD1015 (10 mg/kg). The extent of [11C]-derived radioactivity loss from the brain was studied by inhibition of the enzyme responsible for formation of the tissue metabolite, monoamine oxidase A, using clorgyline (2 mg/kg). After NSD1015, the uptake of [11C]HTP-derived radioactivity was increased in all the investigated brain regions, while the parameter used to reflect decarboxylase activity, the net accumulation rate constant (Kacc), was decreased by 37% in the striatum, compared with baseline. Pretreatment with clorgyline did not change the brain uptake of [11C]HTP-derived radioactivity or Kacc. This study demonstrates that the 2TCM for [11C]HTP/PET is able to detect changes occurring during alteration of the biological process (i.e., the conversion of HTP to serotonin). Elimination of the radiotracer metabolite [11C]HIAA from the brain may be considered negligible if the PET study is limited to 60 min
    corecore