77 research outputs found
Thermoluminescence from europium doped gadolinium oxide aerosols
Poster presented at the International Roundtable on Advanced Wide Band Gap Materials for Radiation Detectors - MATRAD 2007, June 17 till June 20, 2007 in Sinaia, Romani
Energy Estimation of Cosmic Rays with the Engineering Radio Array of the Pierre Auger Observatory
The Auger Engineering Radio Array (AERA) is part of the Pierre Auger
Observatory and is used to detect the radio emission of cosmic-ray air showers.
These observations are compared to the data of the surface detector stations of
the Observatory, which provide well-calibrated information on the cosmic-ray
energies and arrival directions. The response of the radio stations in the 30
to 80 MHz regime has been thoroughly calibrated to enable the reconstruction of
the incoming electric field. For the latter, the energy deposit per area is
determined from the radio pulses at each observer position and is interpolated
using a two-dimensional function that takes into account signal asymmetries due
to interference between the geomagnetic and charge-excess emission components.
The spatial integral over the signal distribution gives a direct measurement of
the energy transferred from the primary cosmic ray into radio emission in the
AERA frequency range. We measure 15.8 MeV of radiation energy for a 1 EeV air
shower arriving perpendicularly to the geomagnetic field. This radiation energy
-- corrected for geometrical effects -- is used as a cosmic-ray energy
estimator. Performing an absolute energy calibration against the
surface-detector information, we observe that this radio-energy estimator
scales quadratically with the cosmic-ray energy as expected for coherent
emission. We find an energy resolution of the radio reconstruction of 22% for
the data set and 17% for a high-quality subset containing only events with at
least five radio stations with signal.Comment: Replaced with published version. Added journal reference and DO
Measurement of the cosmic ray spectrum above eV using inclined events detected with the Pierre Auger Observatory
A measurement of the cosmic-ray spectrum for energies exceeding
eV is presented, which is based on the analysis of showers
with zenith angles greater than detected with the Pierre Auger
Observatory between 1 January 2004 and 31 December 2013. The measured spectrum
confirms a flux suppression at the highest energies. Above
eV, the "ankle", the flux can be described by a power law with
index followed by
a smooth suppression region. For the energy () at which the
spectral flux has fallen to one-half of its extrapolated value in the absence
of suppression, we find
eV.Comment: Replaced with published version. Added journal reference and DO
Measurement of the Radiation Energy in the Radio Signal of Extensive Air Showers as a Universal Estimator of Cosmic-Ray Energy
We measure the energy emitted by extensive air showers in the form of radio
emission in the frequency range from 30 to 80 MHz. Exploiting the accurate
energy scale of the Pierre Auger Observatory, we obtain a radiation energy of
15.8 \pm 0.7 (stat) \pm 6.7 (sys) MeV for cosmic rays with an energy of 1 EeV
arriving perpendicularly to a geomagnetic field of 0.24 G, scaling
quadratically with the cosmic-ray energy. A comparison with predictions from
state-of-the-art first-principle calculations shows agreement with our
measurement. The radiation energy provides direct access to the calorimetric
energy in the electromagnetic cascade of extensive air showers. Comparison with
our result thus allows the direct calibration of any cosmic-ray radio detector
against the well-established energy scale of the Pierre Auger Observatory.Comment: Replaced with published version. Added journal reference and DOI.
Supplemental material in the ancillary file
Double-balloon catheter for induction of labour in women with a previous cesarean section, could it be the best choice?
INTRODUCTION: We analysed the efficacy and safety of double-balloon catheter for cervical ripening in women with a previous cesarean section and which were the most important variables associated with an increased risk of repeated cesarean delivery. MATERIALS AND METHODS: We designed an observational retrospective study of 418 women with unfavourable cervices (Bishop Scoreâ<5), a prior cesarean delivery, and induction of labour with a double-balloon catheter. Baseline maternal data and perinatal outcomes were recorded for a descriptive, bivariate, and multivariate analysis. A p valueâ<0.05 was considered statistically significant. RESULTS: Most women improved their initial Bishop Score (89.5%) although only a 20.8% of them went into spontaneous active labour. Finally, 51.4% of the women achieved a vaginal delivery. Five cases of intrapartum uterine rupture (1.2%) occurred. After multivariate analysis, main risk factors for repeated cesarean section were dystocia in the previous pregnancy (OR 1.744; CI 95% 1.066â2.846), the absence of previous vaginal delivery (OR 2.590; CI 95% 1.066â6.290), suspected fetal macrosomia (OR 2.410; CI 95% 0.959â6.054), and duration of oxytocin induction period (OR 1.005; CI 95% 1.004â1.006). The area under the curve was 0.789 (pâ<â0.001). CONCLUSIONS: Double-balloon catheter seems to be safe and effective for cervical ripening in women with a previous cesarean delivery and unfavourable cervix. In our study, most women could have a vaginal delivery in spite of their risk factors for cesarean delivery. A multivariate model based on some clinical variables has moderate predictive value for intrapartum cesarean section
Multiple Scenario Generation of Subsurface Models:Consistent Integration of Information from Geophysical and Geological Data throuh Combination of Probabilistic Inverse Problem Theory and Geostatistics
Neutrinos with energies above 1017 eV are detectable with the Surface Detector Array of the Pierre Auger Observatory. The identification is efficiently performed for neutrinos of all flavors interacting in the atmosphere at large zenith angles, as well as for Earth-skimming \u3c4 neutrinos with nearly tangential trajectories relative to the Earth. No neutrino candidates were found in 3c 14.7 years of data taken up to 31 August 2018. This leads to restrictive upper bounds on their flux. The 90% C.L. single-flavor limit to the diffuse flux of ultra-high-energy neutrinos with an E\u3bd-2 spectrum in the energy range 1.0
7 1017 eV -2.5
7 1019 eV is E2 dN\u3bd/dE\u3bd < 4.4
7 10-9 GeV cm-2 s-1 sr-1, placing strong constraints on several models of neutrino production at EeV energies and on the properties of the sources of ultra-high-energy cosmic rays
Wettability and Infiltration of Liquid Silicon on Graphite Substrates
The energy crisis has stimulated a rapid growth of developments in the photovoltaic industry in recent years. To reduce the high cost and the toxicity of classical metallurgical routes, new methods, such as vacuum refining of silicon, have been developed. Moreover, at the industry level, parameters such as the porosity in crucibles and dies are not controlled, so wettability, infiltration, and reaction between silicon and graphite are the key factors in the purification process. In this work, the behavior of several refractory substrates against melted silicon was studied by the classic sessile drop method. The most important phenomena, i.e., wettability and infiltration, were compared with the properties of the substrates. According to the results, for the carbonaceous materials, the reaction of triple line silicon-graphite manages these phenomena, whereas for alumina, a passive layer is formed due to the presence of oxygen, which is subsequently eliminated by the chemical reactions, delaying the process. Regarding the contact angle and infiltration behavior, alumina showed the best results, but due to its reactivity, it contaminates Si, so that this material is not recommended for solar silicon application. However, composite 2 is compatible with the application, as it shows good results in comparison with the other materials
New alloying systems for PM-steels: opportunities for the Mn-Si master alloys
Low alloyed steels containing innovative combinations of alloying elements have been produced though the master alloy route. Fe-Mn-Si master alloy systems were designed to enhance sintering by creating a liquid phase, and were manufactured by gas atomizing in N2. This paper presents an overview of the characteristics of steels modified with Fe-Mn-Si master alloys. Special focus is given to defining the proper conditions for sintering, and to analyzing the level of mechanical properties achievable with standard processing conditions. Although high temperatures (>1300 \ubaC) are required for reducing highly stable Mn-Si oxides, standard sintering cycles at 1120 and 1250 \ubaC yielded oxygen contents below 0.1 wt.% and 0.02 wt.% respectively, combined with competitive mechanical properties in the as sintered condition. UTS values around 600 MPa, elongations between 1-3%, hardness values of 200-350 HV10 and impact energies around 10-30 J can be obtain with less than 3 wt.% of alloying elements. Besides, a proper balance of swelling upon liquid phase formation and isothermal shrinkage provides dimensional changes below 0.1
Surface Analysis at Different Sintering Stages of Steel Compacts with Mn and Si
The different stages of sintering have been studied for a gas atomized master alloy containing Fe-Mn-Si-C. Surface characterization and depth profiling of the master alloy powder was performed by meansof XPS. In order to understand the phenomena taking place at surface of the green parts, mixescontaining plain iron powder, master alloy and graphite were heated in high vacuum (10-6 mbar) atincreasing temperatures (400\ubaC, 600\ubaC, 800\ubaC, 1000\ubaC) and analyzed with XPS. The conditionsduring the heat treatments described seem to be reducing enough to remove part of the manganeseand silicon oxides present at the original surface when the annealing is performed at 800\ubaC and1000\ubaC. However, intensive manganese evaporation was observed when heating at 1000\ubaC. Whilethe amount of silicon cations on the surface decreases importantly from 800 to 1000\ubaC, the oxygenconcentration in the surface is very similar and this might point out to a recombination of Si cations toform complex Mn-Si oxides. The Mn/Si cations ratio registered indicates that the oxide formed at1000\ubaC could be the type MnSiO3
- âŠ