431 research outputs found

    The Stellar Initial Mass Function at the Epoch of Reionization

    Get PDF
    I provide estimates of the ultraviolet and visible light luminosity density at z~6 after accounting for the contribution from faint galaxies below the detection limit of deep Hubble and Spitzer surveys. I find the rest-frame V-band luminosity density is a factor of ~2-3 below the ultraviolet luminosity density at z~6. This implies that the maximal age of the stellar population at z~6, for a Salpeter initial mass function, and a single, passively evolving burst, must be <100 Myr. If the stars in z~6 galaxies are remnants of the star-formation that was responsible for ionizing the intergalactic medium, reionization must have been a brief process that was completed at z<7. This assumes the most current estimates of the clumping factor and escape fraction and a Salpeter slope extending up to 200 M_{\sun} for the stellar initial mass function (IMF; dN/dM \propto M^{\alpha}, \alpha=-2.3). Unless the ratio of the clumping factor to escape fraction is less than 60, a Salpeter slope for the stellar IMF and reionization redshift higher than 7 is ruled out. In order to maintain an ionized intergalactic medium from redshift 9 onwards, the stellar IMF must have a slope of \alpha=-1.65 even if stars as massive as ~200 M_{\sun} are formed. Correspondingly, if the intergalactic medium was ionized from redshift 11 onwards, the IMF must have \alpha~-1.5. The range of stellar mass densities at z~6 straddled by IMFs which result in reionization at z>7 is 1.3+/-0.4\times10^{7} Msun/Mpc^3.Comment: 25 pages, 2 tables, 6 figures, ApJ, in press, v680 n

    Metal and molecule cooling in simulations of structure formation

    Full text link
    Cooling is the main process leading to the condensation of gas in the dark matter potential wells and consequently to star and structure formation. In a metal-free environment, the main available coolants are H, He, H2_2 and HD; once the gas is enriched with metals, these also become important in defining the cooling properties of the gas. We discuss the implementation in Gadget-2 of molecular and metal cooling at temperatures lower that 104K\rm10^4 K, following the time dependent properties of the gas and pollution from stellar evolution. We have checked the validity of our scheme comparing the results of some test runs with previous calculations of cosmic abundance evolution and structure formation, finding excellent agreement. We have also investigated the relevance of molecule and metal cooling in some specific cases, finding that inclusion of HD cooling results in a higher clumping factor of the gas at high redshifts, while metal cooling at low temperatures can have a significant impact on the formation and evolution of cold objects.Comment: 9 pages, plus appendices. Revised version. MNRAS accepte

    How does gas cool in DM halos?

    Get PDF
    In order to study the process of cooling in dark-matter (DM) halos and assess how well simple models can represent it, we run a set of radiative SPH hydrodynamical simulations of isolated halos, with gas sitting initially in hydrostatic equilibrium within Navarro-Frenk-White (NFW) potential wells. [...] After having assessed the numerical stability of the simulations, we compare the resulting evolution of the cooled mass with the predictions of the classical cooling model of White & Frenk and of the cooling model proposed in the MORGANA code of galaxy formation. We find that the classical model predicts fractions of cooled mass which, after about two central cooling times, are about one order of magnitude smaller than those found in simulations. Although this difference decreases with time, after 8 central cooling times, when simulations are stopped, the difference still amounts to a factor of 2-3. We ascribe this difference to the lack of validity of the assumption that a mass shell takes one cooling time, as computed on the initial conditions, to cool to very low temperature. [...] The MORGANA model [...] better agrees with the cooled mass fraction found in the simulations, especially at early times, when the density profile of the cooling gas is shallow. With the addition of the simple assumption that the increase of the radius of the cooling region is counteracted by a shrinking at the sound speed, the MORGANA model is also able to reproduce for all simulations the evolution of the cooled mass fraction to within 20-50 per cent, thereby providing a substantial improvement with respect to the classical model. Finally, we provide a very simple fitting function which accurately reproduces the cooling flow for the first ~10 central cooling times. [Abridged]Comment: 15 pages, accepted by MNRA

    Simulating the formation of a proto-cluster at z~2

    Full text link
    We present results from two high-resolution hydrodynamical simulations of proto-cluster regions at z~2.1. The simulations have been compared to observational results for the socalled Spiderweb galaxy system, the core of a putative proto-cluster region at z = 2.16, found around a radio galaxy. The simulated regions have been chosen so as to form a poor cluster with M200~10^14 h-1 Msun (C1) and a rich cluster with M200~2x10^15 h-1 Msun (C2) at z = 0. The simulated proto-clusters show evidence of ongoing assembly of a dominating central galaxy. The stellar mass of the brightest cluster galaxy (BCG) of the C2 system is in excess with respect to observational estimates for the Spiderweb galaxy, with a total star formation rate which is also larger than indicated by observations. We find that the projected velocities of galaxies in the C2 cluster are consistent with observations, while those measured for the poorer cluster C1 are too low compared to the observed velocities. We argue that the Spiderweb complex resemble the high-redshift progenitor of a rich galaxy cluster. Our results indicate that the included supernovae feedback is not enough to suppress star formation in these systems, supporting the need of introducing AGN feedback. According to our simulations, a diffuse atmosphere of hot gas in hydrostatic equilibrium should already be present at this redshift, and enriched at a level comparable to that of nearby galaxy clusters. The presence of this gas should be detectable with future deep X-ray observations.Comment: 6 pages, 4 figures, accepted for publication in MNRAS (Letters

    Lyman Alpha Emitter Evolution in the Reionization Epoch

    Full text link
    Combining cosmological SPH simulations with a previously developed Lyman Alpha production/transmission model and the Early Reionization Model (ERM, reionization ends at redshift z~7), we obtain Lyman Alpha and UV Luminosity Functions (LFs) for Lyman Alpha Emitters (LAEs) for redshifts between 5.7 and 7.6. Matching model results to observations at z~5.7 requires escape fractions of Lyman Alpha, f_alpha=0.3, and UV (non-ionizing) continuum photons, f_c=0.22, corresponding to a color excess, E(B-V)=0.15. We find that (i) f_c increases towards higher redshifts, due the decreasing mean dust content of galaxies, (ii) the evolution of f_alpha/f_c hints at the dust content of the ISM becoming progressively inhomogeneous/clumped with decreasing redshift. The clustering photoionization boost is important during the initial reionization phases but has little effect on the Lyman Alpha LF for a highly ionized IGM. Halo (stellar) masses are in the range 10.0 < \log M_h < 11.8 (8.1 < \log M_* < 10.4) with M_h \propto M_*^{0.64}. The star formation rates are between 3-120 solar masses per year, mass-weighted mean ages are greater than 20 Myr at all redshifts, while the mean stellar metallicity increases from Z=0.12 to 0.22 solar metallicity from z~7.6 to z~5.7; both age and metallicity positively correlate with stellar mass. The brightest LAEs are all characterized by large star formation rates and intermediate ages (~200 Myr), while objects in the faint end of the Lyman Alpha LF show large age and star formation rate spreads. With no more free parameters, the Spectral Energy Distributions of three LAE at z~5.7 observed by Lai et al. (2007) are well reproduced by an intermediate age (182-220 Myr) stellar population and the above E(B-V) value.Comment: 13 pages, 9 figures, accepted to MNRA

    X-MAS2: Study Systematics on the ICM Metallicity Measurements

    Full text link
    (Abridged)The X-ray measurements of the ICM metallicity are becoming more frequent due to the availability of powerful X-ray telescope with excellent spatial and spectral resolutions. The information which can be extracted from the measurements of the alpha-elements, like Oxygen, Magnesium and Silicon with respect to the Iron abundance is extremely important to better understand the stellar formation and its evolutionary history. In this paper we investigate possible source of bias connected to the plasma physics when recovering metal abundances from X-ray spectra. To do this we analyze 6 simulated galaxy clusters processed through the new version of our X-ray MAp Simulator, which allows to create mock XMM-Newton EPIC MOS1 and MOS2 observations. By comparing the spectroscopic results to the input values we find that: i) Fe is recovered with high accuracy for both hot (T>3 keV) and cold (T<2 keV) systems; at intermediate temperatures, however, we find a systematic overestimate which depends on the number counts; ii) O is well recovered in cold clusters, while in hot systems its measure may overestimate by a factor up to 2-3; iii) Being a weak line, the measurement of Mg is always difficult; despite of this, for cold systems (T<2 keV) we do not find any systematic behavior, while for very hot systems (T>5 keV) the spectroscopic measurement may be strongly overestimated up to a factor of 4; iv) Si is well recovered for all the clusters in our sample. We investigate in detail the nature of the systematic effects and biases found. We conclude that they are mainly connected with the multi-temperature nature of the projected observed spectra and to the intrinsic limitation of the XMM-Newton EPIC spectral resolution that does not always allow to disentangle among the emission lines produced by different elements.Comment: (e.g.: 17 pages, 8 figures, accepted for publication in the Astrophysical Journal, updated discussion to match published version-new section:6.3

    Properties of the galaxy population in hydrodynamical simulations of clusters

    Get PDF
    We present a study of the galaxy population predicted by hydrodynamical simulations for a set of 19 galaxy clusters based on the GADGET-2 Tree+SPH code. These simulations include gas cooling, star formation, a detailed treatment of stellar evolution and chemical enrichment, as well as SN energy feedback in the form of galactic winds. We compute the spectro-photometric properties of the simulated galaxies. All simulations have been performed for two choices of the stellar initial mass function: a standard Salpeter IMF, and a top-heavier IMF. Several of the observational properties of the galaxy population in nearby clusters are reproduced fairly well by simulations. A Salpeter IMF is successful in accounting for the slope and the normalization of the color-magnitude relation for the bulk of the galaxy population. Simulated clusters have a relation between mass and optical luminosity which generally agrees with observations, both in normalization and slope. We find that galaxies are generally bluer, younger and more star forming in the cluster outskirts, thus reproducing the observational trends. However, simulated clusters have a total number of galaxies which is significantly smaller than the observed one, falling short by about a factor 2-3. Finally, the brightest cluster galaxies are always predicted to be too massive and too blue, when compared to observations, due to gas overcooling in the core cluster regions, even in the presence of a rather efficient SN feedback.Comment: 15 pages, 17 figures, to appear in MNRA

    The impact of feedback on the low-redshift intergalactic medium

    Get PDF
    We analyse the evolution of the properties of the low-redshift Intergalactic Medium (IGM) using high-resolution hydrodynamic simulations that include a detailed chemical evolution model. We focus on the effects that two different forms of energy feedback, strong galactic winds driven by supernova explosion and Active Galactic Nuclei (AGN) powered by gas accretion onto super-massive black holes (BHs), have on the thermo- and chemo-dynamical properties of of the low redshift IGM. We find that feedback associated to winds (W) and BHs leave distinct signatures in both the chemical and thermal history of the baryons, especially at redshift z<3 [..] We present results for the enrichment in terms of mass and metallicity distributions for the WHIM phase, both as a function of density and temperature. Finally, we compute the evolution of the relative abundances between different heavy elements, namely Oxygen, Carbon and Iron. While both C/O and O/Fe evolve differently at high redshifts for different feedback models, their values are similar at z=0 [..]. The sensitivity of WHIM properties on the implemented feedback scheme could be important both for discriminating between different feedback physics and for detecting the WHIM with future far-UV and X-ray telescopes

    Reproducing the entropy structure in galaxy groups

    Full text link
    We carry out a comparison between observations and hydrodynamic simulations of entropy profiles of groups and clusters of galaxies. We use the Tree+SPH GADGET code to simulate four halos of sizes in the M_500 = 1.0 - 16.e13 h^-1 Msun range, corresponding to poor groups up to Virgo-like clusters. We concentrate on the effect of introducing radiative cooling, star formation, and a variety of non-gravitational heating schemes on the entropy structure and the stellar fraction. We show that all the simulations result in a correct entropy profile for the Virgo-like cluster. With the heating energy budget of ~0.7 keV/particle injected at z_h=3, we are also able to reproduce the entropy profiles of groups. We obtain the flat entropy cores as a combined effect of preheating and cooling, while we achieve the high entropy at outskirts by preheating. The resulting baryon fraction locked into stars is in the 25-30% range, compared to 35-40% in the case of no preheating. Heating at higher redshift, z_h=9, strongly delays the star-formation, but fails to produce a sufficiently high specific entropy.Comment: 5 page, A&A in pres
    corecore