15 research outputs found

    Combined point of care nucleic acid and antibody testing for SARS-CoV-2 following emergence of D614G Spike Variant

    Get PDF
    Rapid COVID-19 diagnosis in hospital is essential, though complicated by 30-50% of nose/throat swabs being negative by SARS-CoV-2 nucleic acid amplification testing (NAAT). Furthermore, the D614G spike mutant now dominates the pandemic and it is unclear how serological tests designed to detect anti-Spike antibodies perform against this variant. We assess the diagnostic accuracy of combined rapid antibody point of care (POC) and nucleic acid assays for suspected COVID-19 disease due to either wild type or the D614G spike mutant SARS-CoV-2. The overall detection rate for COVID-19 is 79.2% (95CI 57.8-92.9%) by rapid NAAT alone. Combined point of care antibody test and rapid NAAT is not impacted by D614G and results in very high sensitivity for COVID-19 diagnosis with very high specificity

    Efficacy and safety of baricitinib or ravulizumab in adult patients with severe COVID-19 (TACTIC-R): a randomised, parallel-arm, open-label, phase 4 trial

    Get PDF
    Background From early in the COVID-19 pandemic, evidence suggested a role for cytokine dysregulation and complement activation in severe disease. In the TACTIC-R trial, we evaluated the efficacy and safety of baricitinib, an inhibitor of Janus kinase 1 (JAK1) and JAK2, and ravulizumab, a monoclonal inhibitor of complement C5 activation, as an adjunct to standard of care for the treatment of adult patients hospitalised with COVID-19. Methods TACTIC-R was a phase 4, randomised, parallel-arm, open-label platform trial that was undertaken in the UK with urgent public health designation to assess the potential of repurposing immunosuppressants for the treatment of severe COVID-19, stratified by a risk score. Adult participants (aged ≥18 years) were enrolled from 22 hospitals across the UK. Patients with a risk score indicating a 40% risk of admission to an intensive care unit or death were randomly assigned 1:1:1 to standard of care alone, standard of care with baricitinib, or standard of care with ravulizumab. The composite primary outcome was the time from randomisation to incidence (up to and including day 14) of the first event of death, invasive mechanical ventilation, extracorporeal membrane oxygenation, cardiovascular organ support, or renal failure. The primary interim analysis was triggered when 125 patient datasets were available up to day 14 in each study group and we included in the analysis all participants who were randomly assigned. The trial was registered on ClinicalTrials.gov (NCT04390464). Findings Between May 8, 2020, and May 7, 2021, 417 participants were recruited and randomly assigned to standard of care alone (145 patients), baricitinib (137 patients), or ravulizumab (135 patients). Only 54 (39%) of 137 patients in the baricitinib group received the maximum 14-day course, whereas 132 (98%) of 135 patients in the ravulizumab group received the intended dose. The trial was stopped after the primary interim analysis on grounds of futility. The estimated hazard ratio (HR) for reaching the composite primary endpoint was 1·11 (95% CI 0·62–1·99) for patients on baricitinib compared with standard of care alone, and 1·53 (0·88–2·67) for ravulizumab compared with standard of care alone. 45 serious adverse events (21 deaths) were reported in the standard-of-care group, 57 (24 deaths) in the baricitinib group, and 60 (18 deaths) in the ravulizumab group. Interpretation Neither baricitinib nor ravulizumab, as administered in this study, was effective in reducing disease severity in patients selected for severe COVID-19. Safety was similar between treatments and standard of care. The short period of dosing with baricitinib might explain the discrepancy between our findings and those of other trials. The therapeutic potential of targeting complement C5 activation product C5a, rather than the cleavage of C5, warrants further evaluation

    Complement lectin pathway activation is associated with COVID-19 disease severity, independent of MBL2 genotype subgroups

    Get PDF
    IntroductionWhile complement is a contributor to disease severity in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections, all three complement pathways might be activated by the virus. Lectin pathway activation occurs through different pattern recognition molecules, including mannan binding lectin (MBL), a protein shown to interact with SARS-CoV-2 proteins. However, the exact role of lectin pathway activation and its key pattern recognition molecule MBL in COVID-19 is still not fully understood.MethodsWe therefore investigated activation of the lectin pathway in two independent cohorts of SARS-CoV-2 infected patients, while also analysing MBL protein levels and potential effects of the six major single nucleotide polymorphisms (SNPs) found in the MBL2 gene on COVID-19 severity and outcome.ResultsWe show that the lectin pathway is activated in acute COVID-19, indicated by the correlation between complement activation product levels of the MASP-1/C1-INH complex (p=0.0011) and C4d (p<0.0001) and COVID-19 severity. Despite this, genetic variations in MBL2 are not associated with susceptibility to SARS-CoV-2 infection or disease outcomes such as mortality and the development of Long COVID.ConclusionIn conclusion, activation of the MBL-LP only plays a minor role in COVID-19 pathogenesis, since no clinically meaningful, consistent associations with disease outcomes were noted

    SARS-CoV-2 B.1.617.2 Delta variant replication and immune evasion

    Get PDF
    Abstract: The B.1.617.2 (Delta) variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first identified in the state of Maharashtra in late 2020 and spread throughout India, outcompeting pre-existing lineages including B.1.617.1 (Kappa) and B.1.1.7 (Alpha)1. In vitro, B.1.617.2 is sixfold less sensitive to serum neutralizing antibodies from recovered individuals, and eightfold less sensitive to vaccine-elicited antibodies, compared with wild-type Wuhan-1 bearing D614G. Serum neutralizing titres against B.1.617.2 were lower in ChAdOx1 vaccinees than in BNT162b2 vaccinees. B.1.617.2 spike pseudotyped viruses exhibited compromised sensitivity to monoclonal antibodies to the receptor-binding domain and the amino-terminal domain. B.1.617.2 demonstrated higher replication efficiency than B.1.1.7 in both airway organoid and human airway epithelial systems, associated with B.1.617.2 spike being in a predominantly cleaved state compared with B.1.1.7 spike. The B.1.617.2 spike protein was able to mediate highly efficient syncytium formation that was less sensitive to inhibition by neutralizing antibody, compared with that of wild-type spike. We also observed that B.1.617.2 had higher replication and spike-mediated entry than B.1.617.1, potentially explaining the B.1.617.2 dominance. In an analysis of more than 130 SARS-CoV-2-infected health care workers across three centres in India during a period of mixed lineage circulation, we observed reduced ChAdOx1 vaccine effectiveness against B.1.617.2 relative to non-B.1.617.2, with the caveat of possible residual confounding. Compromised vaccine efficacy against the highly fit and immune-evasive B.1.617.2 Delta variant warrants continued infection control measures in the post-vaccination era

    Multi-center MRI prediction models : Predicting sex and illness course in first episode psychosis patients

    Get PDF
    Structural Magnetic Resonance Imaging (MRI) studies have attempted to use brain measures obtained at the first-episode of psychosis to predict subsequent outcome, with inconsistent results. Thus, there is a real need to validate the utility of brain measures in the prediction of outcome using large datasets, from independent samples, obtained with different protocols and from different MRI scanners. This study had three main aims: 1) to investigate whether structural MRI data from multiple centers can be combined to create a machine-learning model able to predict a strong biological variable like sex; 2) to replicate our previous finding that an MRI scan obtained at first episode significantly predicts subsequent illness course in other independent datasets; and finally, 3) to test whether these datasets can be combined to generate multicenter models with better accuracy in the prediction of illness course. The multi-center sample included brain structural MRI scans from 256 males and 133 females patients with first episode psychosis, acquired in five centers: University Medical Center Utrecht (The Netherlands) (n = 67); Institute of Psychiatry, Psychology and Neuroscience, London (United Kingdom) (n = 97); University of São Paulo (Brazil) (n = 64); University of Cantabria, Santander (Spain) (n = 107); and University of Melbourne (Australia) (n = 54). All images were acquired on 1.5-Tesla scanners and all centers provided information on illness course during a follow-up period ranging 3 to 7 years. We only included in the analyses of outcome prediction patients for whom illness course was categorized as either “continuous” (n = 94) or “remitting” (n = 118). Using structural brain scans from all centers, sex was predicted with significant accuracy (89%; p <0.001). In the single- or multi-center models, illness course could not be predicted with significant accuracy. However, when reducing heterogeneity by restricting the analyses to male patients only, classification accuracy improved in some samples. This study provides proof of concept that combining multi-center MRI data to create a well performing classification model is possible. However, to create complex multi-center models that perform accurately, each center should contribute a sample either large or homogeneous enough to first allow accurate classification within the single-center
    corecore