307 research outputs found

    Core Interface Optimization for Multi-core Neuromorphic Processors

    Get PDF
    Hardware implementations of Spiking Neural Networks (SNNs) represent a promising approach to edge-computing for applications that require low-power and low-latency, and which cannot resort to external cloud-based computing services. However, most solutions proposed so far either support only relatively small networks, or take up significant hardware resources, to implement large networks. To realize large-scale and scalable SNNs it is necessary to develop an efficient asynchronous communication and routing fabric that enables the design of multi-core architectures. In particular the core interface that manages inter-core spike communication is a crucial component as it represents the bottleneck of Power-Performance-Area (PPA) especially for the arbitration architecture and the routing memory. In this paper we present an arbitration mechanism with the corresponding asynchronous encoding pipeline circuits, based on hierarchical arbiter trees. The proposed scheme reduces the latency by more than 70% in sparse-event mode, compared to the state-of-the-art arbitration architectures, with lower area cost. The routing memory makes use of asynchronous Content Addressable Memory (CAM) with Current Sensing Completion Detection (CSCD), which saves approximately 46% energy, and achieves a 40% increase in throughput against conventional asynchronous CAM using configurable delay lines, at the cost of only a slight increase in area. In addition as it radically reduces the core interface resources in multi-core neuromorphic processors, the arbitration architecture and CAM architecture we propose can be also applied to a wide range of general asynchronous circuits and systems

    Dynamic effects in the scattering of electrons by small clusters of atoms

    Full text link
    Dynamic scattering corrections were calculated for 40 kV electrons diffracted by randomly oriented fcc clusters of argon and of gold atoms ranging in size from 13 to 135 atoms. Computations were carried out according to several variants of two limiting theoretical approaches, namely, the direct summing up of atomic contributions calculated through single–single and single–double scattered waves by modifications of Glauber theory, and the extrapolation to limitingly small crystallites of conventional dynamic theory in the Blackman and Fujimoto formulations. For the small clusters studied, integrated intensities of diffraction rings (through single–double scatterings) calculated for three dimensional crystallites differ insignificantly from Glauber theory intensities calculated by projecting atomic potential energies onto a plane perpendicular to the mean direction of the incident and scattered wave vectors. The fractional dynamic correction increases with cluster size very nearly as N2/3 in both the Glauber and Blackman–Fujimoto limiting treatments. For crystalline clusters 8–20 Å in diameter, the dynamic effect calculated by summing single–double scatterings is an order of magnitude larger than that according to Blackman–Fujimoto theory. For argon clusters the dynamic effect is not serious; but according to our direct sums, dynamic corrections for 16 Å spheres of gold are surprisingly large, exceeding 25% for 111 reflections. Since the direct sums have been verified experimentally for several vapor‐phase molecules, the present work indicates that, in the limit of very small scatterers, extrapolations from conventional two‐beam dynamic theory may seriously underestimate the magnitude of dynamic effects.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/71250/2/JCPSA6-66-12-5387-1.pd

    Training in communication skills for PhD students : report of innovation

    Get PDF
    Un stage de formation à la communication est proposé depuis plusieurs années aux moniteurs scientifiques du Centre d'Initiation à l'Enseignement Supérieur (CIES) de l'académie de Versailles. Divers types de communication scientifique sont abordés par le biais de conférences-débats, mais la majeure partie du stage est consacrée à l'élaboration, par chaque moniteur, d'une affiche présentant son sujet de thèse. Ces affiches, qui doivent être compréhensibles par les moniteurs de toutes les disciplines, sont finalement commentées oralement suivant la pratique des congrès (poster sessions)

    Core interface optimization for multi-core neuromorphic processors

    Full text link
    Hardware implementations of Spiking Neural Networks (SNNs) represent a promising approach to edge-computing for applications that require low-power and low-latency, and which cannot resort to external cloud-based computing services. However, most solutions proposed so far either support only relatively small networks, or take up significant hardware resources, to implement large networks. To realize large-scale and scalable SNNs it is necessary to develop an efficient asynchronous communication and routing fabric that enables the design of multi-core architectures. In particular the core interface that manages inter-core spike communication is a crucial component as it represents the bottleneck of Power-Performance-Area (PPA) especially for the arbitration architecture and the routing memory. In this paper we present an arbitration mechanism with the corresponding asynchronous encoding pipeline circuits, based on hierarchical arbiter trees. The proposed scheme reduces the latency by more than 70% in sparse-event mode, compared to the state-of-the-art arbitration architectures, with lower area cost. The routing memory makes use of asynchronous Content Addressable Memory (CAM) with Current Sensing Completion Detection (CSCD), which saves approximately 46% energy, and achieves a 40% increase in throughput against conventional asynchronous CAM using configurable delay lines, at the cost of only a slight increase in area. In addition as it radically reduces the core interface resources in multi-core neuromorphic processors, the arbitration architecture and CAM architecture we propose can be also applied to a wide range of general asynchronous circuits and systems

    A role for SSU72 in balancing RNA polymerase II transcription elongation and termination

    Full text link
    Interactions of pre-mRNA 3&prime;end factors and the CTD of RNA polymerase II (RNAP II) are required for transcription termination and 3&prime;end processing. Here, we demonstrate that Ssu72p is stably associated with yeast cleavage and polyadenylation factor CPF and provide evidence that it bridges the CPF subunits Pta1p and Ydh1p/Cft2p, the general transcription factor TFIIB, and RNAP II via Rpb2p. Analyses of ssu72-2 mutant cells in the absence and presence of the nuclear exosome component Rrp6p revealed defects in RNAP II transcription elongation and termination. 6-azauracil, that reduces transcription elongation rates, suppressed the ssu72-2 growth defect at 33&deg;C. The sum of our analyses suggests a negative influence of Ssu72p on RNAP II during transcription that affects the commitment to either elongation or termination.<br /

    Co-transcriptional degradation of aberrant pre-mRNA by Xrn2

    Get PDF
    Eukaryotic protein-coding genes are transcribed as pre-mRNAs that are matured by capping, splicing and cleavage and polyadenylation. Although human pre-mRNAs can be long and complex, containing multiple introns and many alternative processing sites, they are usually processed co-transcriptionally. Mistakes during nuclear mRNA maturation could lead to potentially harmful transcripts that are important to eliminate. However, the processes of human pre-mRNA degradation are not well characterised in the human nucleus. We have studied how aberrantly processed pre-mRNAs are degraded and find a role for the 5′→3′ exonuclease, Xrn2. Xrn2 associates with and co-transcriptionally degrades nascent β-globin transcripts, mutated to inhibit splicing or 3′ end processing. Importantly, we provide evidence that many endogenous pre-mRNAs are also co-transcriptionally degraded by Xrn2 when their processing is inhibited by Spliceostatin A. Our data therefore establish a previously unknown function for Xrn2 and an important further aspect of pre-mRNA metabolism that occurs co-transcriptionally

    Report from the fourth international consensus meeting to harmonize core outcome measures for atopic eczema/dermatitis clinical trials (HOME initiative)

    Get PDF
    This article is a report of the fourth meeting of the Harmonising Outcome Measures for Eczema (HOME) initiative held in Malmö, Sweden on 23–24 April 2015 (HOME IV). The aim of the meeting was to achieve consensus over the preferred outcome instruments for measuring patient-reported symptoms and quality of life for the HOME core outcome set for atopic eczema (AE). Following presentations, which included data from systematic reviews, consensus discussions were held in a mixture of whole group and small group discussions. Small groups were allocated a priori to ensure representation of different stakeholders and countries. Decisions were voted on using electronic keypads. For the patient-reported symptoms, the group agreed by vote that itch, sleep loss, dryness, redness/inflamed skin and irritated skin were all considered essential aspects of AE symptoms. Many instruments for capturing patient-reported symptoms were discussed [including the Patient-Oriented SCOring Atopic Dermatitis index, Patient-Oriented Eczema Measure (POEM), Self-Administered Eczema Area and Severity Index, Itch Severity Scale, Atopic Dermatitis Quickscore and the Nottingham Eczema Severity Score] and, by consensus, POEM was selected as the preferred instrument to measure patient-reported symptoms. Further work is needed to determine the reliability and measurement error of POEM. Further work is also required to establish the importance of pain/soreness and the importance of collecting information regarding the intensity of symptoms in addition to their frequency. Much of the discussion on quality of life concerned the Dermatology Life Quality Index and Quality of Life Index for Atopic Dermatitis; however, consensus on a preferred instrument for measuring this domain could not be reached. In summary, POEM is recommended as the HOME core outcome instrument for measuring AE symptoms

    Report from the fifth international consensus meeting to harmonize core outcome measures for atopic eczema/dermatitis clinical trials (HOME initiative)

    Get PDF
    This is the report from the fifth meeting of the Harmonising Outcome Measures for Eczema initiative (HOME V). The meeting was held on 12–14 June 2017 in Nantes, France, with 81 participants. The main aims of the meeting were (i) to achieve consensus over the definition of the core domain of long-term control and how to measure it and (ii) to prioritize future areas of research for the measurement of the core domain of quality of life (QoL) in children. Moderated whole-group and small-group consensus discussions were informed by presentations of qualitative studies, systematic reviews and validation studies. Small-group allocations were performed a priori to ensure that each group included different stakeholders from a variety of geographical regions. Anonymous whole-group voting was carried out using handheld electronic voting pads according to predefined consensus rules. It was agreed by consensus that the long-term control domain should include signs, symptoms, quality of life and a patient global instrument. The group agreed that itch intensity should be measured when assessing long-term control of eczema in addition to the frequency of itch captured by the symptoms domain. There was no recommendation of an instrument for the core outcome domain of quality of life in children, but existing instruments were assessed for face validity and feasibility, and future work that will facilitate the recommendation of an instrument was agreed upon. The Harmonising Outcome Measures for Eczema (HOME) initiative is an international group working together to develop a core outcome set (COS) for clinical trials in eczema (synonymous with atopic eczema and atopic dermatitis). HOME is coordinated from the Centre of Evidence Based Dermatology, University of Nottingham, U.K. Participation in HOME is open to anyone with an interest in outcomes for eczema. A COS is the agreed upon minimum set of instruments that should be included in all clinical trials for a particular condition. Use of a COS does not preclude using other instruments; other domains and instruments can also be included to meet the specific requirements of individual trials. COS initiatives are active across many fields of medicine and should enable better synthesis of trial data and reduce selective outcome reporting bias. The HOME initiative follows the best current guidance on developing a COS. Four core domains have been identified: clinician-reported signs; patient-reported symptoms; quality of life; and long-term control. The core outcome measurement instruments for clinician-reported signs and patient-reported symptoms have been established: the Eczema Area and Severity Index (EASI) for measuring clinician reported signs was agreed on at the HOME III meeting, and the Patient-Oriented Eczema Measure (POEM) was chosen to measure patient-reported symptoms at the HOME IV meeting. This is a report from the fifth consensus meeting of the HOME initiative (HOME V), which was held on 12–14 June 2017 in Nantes, France. The local organizers were Sebastien Barbarot and Jean-Francois Stalder of Nantes University Hospital, France

    Microarray detection of novel nuclear RNA substrates for the exosome

    Get PDF
    Microarray analyses were performed on yeast strains mutant for the nuclear-specific exosome components Rrp6p and Rrp47p/Lrp1p or the core component Rrp41p/Ski6p, at permissive temperature and following transfer to 37 degrees C. 339 mRNAs showed clearly altered expression levels, with an unexpectedly high degree of heterogeneity in the different exosome mutants. In contrast, no clear alterations were seen in strains lacking the cytoplasmic exosome component Ski7p. 27 mRNAs that were overexpressed in each strain defective in the nuclear exosome are good candidates for regulation by nuclear turnover. These included the mRNA for the autoregulated RNA-binding protein Nrd1p. Northern and primer extension analyses confirmed the elevated NRD1 mRNA levels in exosome mutants, and revealed the accumulation of truncated 5' fragments of the mRNA. These contain a predicted Nrd1p-binding site, potentially sequestering the protein and disrupting its autoregulation. Several genes located immediately downstream of independently transcribed snoRNA genes were overexpressed in exosome mutants, presumably due to stabilization of the products of transcription termination read-through. Further analyses indicated that many snoRNA and snRNA genes are inefficiently terminated, but read-through transcripts into downstream ORFs are normally rapidly degraded by the exosome. Copyright (c) 2006 John Wiley & Sons, Ltd

    DenRAM: Neuromorphic Dendritic Architecture with RRAM for Efficient Temporal Processing with Delays

    Get PDF
    An increasing number of neuroscience studies are highlighting the importance of spatial dendritic branching in pyramidal neurons in the brain for supporting non-linear computation through localized synaptic integration. In particular, dendritic branches play a key role in temporal signal processing and feature detection, using coincidence detection (CD) mechanisms, made possible by the presence of synaptic delays that align temporally disparate inputs for effective integration. Computational studies on spiking neural networks further highlight the significance of delays for CD operations, enabling spatio-temporal pattern recognition within feed-forward neural networks without the need for recurrent architectures. In this work, we present DenRAM, the first realization of a spiking neural network with analog dendritic circuits, integrated into a 130nm technology node coupled with resistive memory (RRAM) technology. DenRAM's dendritic circuits use the RRAM devices to implement both delays and synaptic weights in the network. By configuring the RRAM devices to reproduce bio-realistic timescales, and through exploiting their heterogeneity, we experimentally demonstrate DenRAM's capability to replicate synaptic delay profiles, and efficiently implement CD for spatio-temporal pattern recognition. To validate the architecture, we conduct comprehensive system-level simulations on two representative temporal benchmarks, highlighting DenRAM's resilience to analog hardware noise, and its superior accuracy compared to recurrent architectures with an equivalent number of parameters. DenRAM not only brings rich temporal processing capabilities to neuromorphic architectures, but also reduces the memory footprint of edge devices, provides high accuracy on temporal benchmarks, and represents a significant step-forward in low-power real-time signal processing technologies
    corecore