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Abstract—Hardware implementations of Spiking Neural Net-
works (SNNs) represent a promising approach to edge-computing
for applications that require low-power and low-latency, and which
cannot resort to external cloud-based computing services. However,
most solutions proposed so far either support only relatively small
networks, or take up significant hardware resources, to implement
large networks. To realize large-scale and scalable SNNs it is
necessary to develop an efficient asynchronous communication and
routing fabric that enables the design of multi-core architectures.
In particular the core interface that manages inter-core spike
communication is a crucial component as it represents the
bottleneck of Power-Performance-Area (PPA) especially for the
arbitration architecture and the routing memory. In this paper
we present an arbitration mechanism with the corresponding
asynchronous encoding pipeline circuits, based on hierarchical
arbiter trees. The proposed scheme reduces the latency by more
than 70% in sparse-event mode, compared to the state-of-the-
art arbitration architectures, with lower area cost. The routing
memory makes use of asynchronous Content Addressable Memory
(CAM) with Current Sensing Completion Detection (CSCD), which
saves approximately 46% energy, and achieves a 40% increase
in throughput against conventional asynchronous CAM using
configurable delay lines, at the cost of only a slight increase
in area. In addition as it radically reduces the core interface
resources in multi-core neuromorphic processors, the arbitration
architecture and CAM architecture we propose can be also applied
to a wide range of general asynchronous circuits and systems.

Index Terms—Multi-core neuromorphic processors, core inter-
face, arbitration architecture, asynchronous CAM

I. Introduction

Neuromorphic processors are event-based processing archi-

tectures that adopt in-memory computing strategies and brain-

inspired principles of computation to implement computational

models of Spiking Neural Networks (SNNs) [1]. Due to

their asynchronous and spike-based data-driven processing

nature, they have the potential of achieving ultra-low power

computations for edge-computing applications. An efficient

This work was partially supported by the European Research Council (ERC)
under the European Union’s Horizon 2020 Research and Innovation Program
Grant Agreement No. 724295 (NeuroAgents), and by the Electronic Component
Systems for European Leadership (ECSEL) joint undertaking Grant Agreement
No. 876925 (ANDANTE).
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Fig. 1: AER communication pipeline: each time a neuron spikes

its address is encoded and transmitted on a shared bus using

asynchronous circuits. Collisions (potential parallel spikes)

are managed through asynchronous arbitration circuits, and

neural network connectivity schemes are programmed via local

memory Look Up Tables (LUT).

way to build large-scale SNN processing systems, from both

the modeling and implementation perspective, is to adopt

a multi-core architecture design approach [2]–[6]. In these

systems each core consists of a neuro-synaptic array comprising

digital or mixed-signal synapse and neuron soma circuits, and

an asynchronous digital core interface. The core interface is

responsible for receiving input events and delivering them to

the target synapses, and for transmitting the soma output spikes

to target synapses and neurons, within the same core, or across

multiple cores.

The most common communication protocol use to transmit

spikes from source neurons to destination ones in neuromor-

phic systems is based on the Address-Event Representation

(AER) [7]. Figure 1 shows how the parallel output events

from the neurons in a neuron core are encoded and time-

multiplexed on a shared digital bus to provide support for

inter-core and inter-chip communication. An arbiter in the core

output interface (“Arb” in Fig. 1) is used to manage potential

collisions from multiple coincident neuron requests, and to

grant access to the data bus to one neuron at a time. The

routing memory in the core input interface (“Mem” in Fig. 1)

is used as Look Up Table (LUT) for storing and configuring

the neural connections. A LUT can also be present in the
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output interface, depending on the different routing methods

adopted. An other type of memory that is commonly used in

neuromorphic processors is the Content Addressable Memory

(CAM), as its in-memory search operations can be instrumental

for the network routing, when used directly in the synapse arrays

of the neuromorphic cores.

Despite recent improvements in ultra-low power neuron

designs [8] and high performance data packet switches [9],

the optimization of the neuromorphic core interfaces remains

a daunting task. This is especially true for the arbitration

architecture, when it includes the encoding pipeline (as is

the case presented here), and the routing memory. Both these

elements represent the most important factors for the Power-

Performance-Area (PPA) bottleneck of multi-core neuromorphic

processors, as a function of neural network size. For example,

in the neuromorphic processors proposed in [6], the power

consumption of the arbiter and routing memory takes up more

than 80% of the total power budget.

Contributions of this work

In this work we substantially reduce the core interface

hardware overhead for multi-core neuromorphic processors,

by designing a novel asynchronous arbitration architecture

in the core output interface and a new asynchronous CAM

architecture in the core input interface. Specifically, the work

presented:

• provides a new arbitration mechanism based on a hierar-

chical arbiter tree (HAT) and its asynchronous encoding

pipeline circuits.

• compares the new arbitration architecture to other existing

arbitration architectures.

• provides a new asynchronous CAM architecture based on

CSCD, with feedback control and speculative sense.

• presents custom-designed CAM circuits, with comparisons

to conventional asynchronous CAM circuits.

We show how this arbitration architecture has improved

performance, compared to previously proposed arbitration

schemes, with up to 78.3% lower latency figures and less area

cost. To the best of our knowledge, no other asynchronous CAM

architecture has been developed so far, which takes advantage

of CSCD to perform robust search operations. The proposed

CAM architecture achieves 40.4% throughput increase and

46.7% energy reduction with slight area increase compared to

conventional asynchronous CAM arrays.

In the following section we discuss the background of

arbiter and CAM circuits used in neuromorphic processors.

In Section III we present the new arbitration architecture.

Section IV presents the new CAM architecture, and in Section V

we conclude the paper.

II. Background

This section reviews the background on arbitration archi-

tecture and asynchronous CAM. It introduces the existing

arbitration architectures and the asynchronous CAM, which

forms the foundation of the new work of this paper.

A. Arbitration schemes

Purohit and Manohar [10] reviewed drawbacks and benefits

of different arbitrating approaches. Arbitrating and encoding

neuron’s address based on a binary tree topology is suitable

for applications with low event-rates and small neuron cluster

size, because the request only needs to propagate through

log2 (𝑁) stages. However, area cost and latency become worse

when the neuron cluster size increases since the number of

two-input arbiters increase linearly and every neuron’s request

has to propagate the whole arbiter tree. The probability of

grant overlapping also increases as the depth of arbiter tree

increases. The “greedy tree” represents an improvement to the

original binary tree in situations where multiple input requests

arrive within a very short time period [11]. But it suffers

strict timing requirement which restricts the use for general

applications [11]. Both binary and greedy tree schemes have

high power consumption, since each granted output of the

arbiter drives log2 (𝑁) address lines of the logarithmic encoder.

Another approach is to use a arbitrating mechanism with a

ring-based topology. This approach can quickly service a burst

of localized events but becomes worse when sparse events

are far apart in space, because the token has to travel for a

long distance, for each input request, when requests are sparse.

Purohit and Manohar [10] propose a hierarchical token ring

(HTR) method which can service sparse events like a binary

tree and quickly scan through a section of the array like a linear

token ring. But it needs to change the number of processes

in the rings and the number of levels of hierarchy to make

the design tailored to different application scenarios, which is

difficult to be implemented in a dynamic neuromorphic system

since the neuron firing rates are dynamically changed. The high

area cost of HTR also makes it hard to scale up the neuron

core’s size since the number of two-input arbiter also increases

linearly as the number of neuron increases.

Here, we present a new arbitration mechanism based on

multiple small arbiter tree and the circuits implementation

of corresponding asynchronous encoding pipeline, which

has lowest latency compared with all of other arbitration

architectures when the events are sparse. During the burst event

mode, HAT get similar performance with HTR and token-ring,

but only needs log2 (𝑁) two-input arbiters which makes it low

area cost. Since HAT only use multiple small arbiter trees,

which reduces the risk of grant overlapping in deep arbiter tree

and makes the architecture more robust.

B. CAM

CAM cells have been widely used as a way to accelerate the

search operation in large LUTs, due to their single-cycle parallel

search operation abilities [12]. Neuromorphic processors usually

use CAMs in addressable synapses to increase the flexibility

of network mapping, especially when the network has sparse

connectivity [6]. Various CAM design approaches have been

previously introduced. The CAM architecture based on the

NOR-type CAM cell (reliable and fast) [12] and current-race

match-line sense amplifier (MLSA) is widely used. This sensing

scheme pre-charges the match-line (ML) low and evaluates



the ML state by charging the ML with a current supplied

by a current source. The benefits of this scheme over the

precharge-high schemes are the simplicity of the threshold

circuitry and the extra savings in search-line (SL) power due to

the elimination of the SL precharge phase and also there is no

charge-sharing problem [13]. In every CAM cell, in addition to

a 6T-SRAM cell, there are three transistors for bit comparison.

When the stored data and search data on the SL are same (in the

MATCH case), ML pull-down path (ML to GND) is disconnected

then the ML can be charged until MLSA generates pulse as a

input spike to the target neuron. On the other hand, when the

stored-data and search data are opposite(in the MISMATCH case),

the ML pull-down path is formed and ML can’t be charged. The

Off signal from the dummy CAM entry as shown in Fig. 6 is to

terminate the current source in every MLSA, which is designed

to be "always MATCH" with the worst case (assumed to be

the last one to produce a MATCH signal). Numerous switching

of ML in MATCH case and direct current flow in pull-down

path in MISMATCH case come at the cost of huge dynamic

power consumption. Moreover, for event-driven neuromorphic

processors, designing a robust asynchronous CAM architecture

without sacrificing performance and energy efficiency is an

another challenge, which is still a blank in field of asynchronous

circuits.

Moradi et al. [6] use the same CAM architecture described

above as an asynchronous target memory with multiple tags.

Each CAM entry (tag) represents the address of source neuron

that the target neuron is subscribed to. To minimize the area,

this asynchronous CAM architecture is designed following a

bundled-data style instead of (Quasi-delay-insensitive) QDI

style. The search operation of the asynchronous CAM archi-

tecture follows a standard four-phase handshaking protocol

to communicate with the handshake(HS) block. In order to

guarantee the correct handshaking communication between

the HS block and the CAM array, it is necessary to make

two appropriate timing assumptions. The first one is that the

presence of valid input data should be earlier than the request

signal which is used to enable the searching operation. This

is the common timing constraint in bundled-data design style

which is not difficult to satisfy. The second timing assumption

is made when sending the acknowledge signal to HS block, to

ensure that the search operation in the whole CAM array is

completed. This assumption represents a key challenge for this

asynchronous CAM architecture, because of the mismatch of

current source circuits in MLSA and of the different numbers

of MISMATCH bits in the different CAM entries (which results

in different ML wiring capacitance load). These issues make it

difficult to evaluate the time for completing the search operation

and to make correct assumptions. As shown in Fig. 6a, a

configurable delay line is used to leave enough timing margin

for finishing the whole searching operation, which is a trade-

off between performance and robustness. To avoid the false

negative error, high cycle time has to be the cost, which

becomes the bandwidth bottleneck in multi-core neuromorphic

processors.

To address this problem we propose a novel asynchronous

(a) High level neuron cluster (b) Medium level neuron cluster

(c) Low level neuron cluster

Fig. 2: Hierarchical arbitration mechanism schemes.

CAM architecture, which makes use of the CSCD technique

to eliminate the second timing assumption. CSCD exploits

the fact that charging and discharging parasitic capacitance of

internal nodes in digital circuits occur only when the signal

is in transition to determine the working state of the circuit.

CSCD has already been used in asynchronous bundled-data

pipeline circuits to take the advantages of the cost-efficient

characteristics of bundled-data design without suffering the

disadvantages of PVT-sensitive matching delay cells [14]. The

CSCD used in CAM architecture we propose is to detect the

current flow change during the searching operation and act

as an acknowledge signal generator. There are also two novel

mechanisms in the new CAM architecture: feedback control and

speculative sense to significantly reduce the power consumption

in MATCH and MISMATCH cases respectively.

III. Proposed hierarchical arbiter tree

In this section, the new arbitration mechanism and corre-

sponding asynchronous encoding pipeline circuits are presented,

followed by the experimental results and discussion.

A. Arbitration Mechanism

Figure 2 shows an example of 64 neurons encoded by a

hierarchical arbitration mechanism, which needs a 6four-inputs

deep arbiter tree to encode 64 neurons using 6 bits if there is no

any hierarchical arbitration. Based on HAT method, arbitration

and encoding can be done for every 2bits. As shown in Fig. 2a,

the cluster with 16 neurons (highlight in green) share the

pin Req[0] and Grant[0] in high level arbiter "ArbiterH" in

Fig. 3, which is usually implemented by pull-down transistors

and pull-up circuits to reduce area cost instead of using OR

gate tree [6], [11]. The neurons highlight in Fig. 2b and Fig. 2c,

which share the pin Req[0] Grant[0] of medium level arbiter

"ArbiterM" and the pin Req[0] Grant[0] of low level arbiter

"ArbiterL" respectively. The arbitration starts from high level

arbitration. Only when the arbiter gives the grant to one of

the four neuron clusters, the active neurons in that cluster can

send the requests to the medium level arbiter. The operation



relationship between the medium level arbiter and the low level

arbiter is the same as that. The arbiter will not give grant to

another cluster until all of active neurons in the current cluster

have been encoded.

B. Asynchronous encoding pipeline circuits

Inspired by high-capacity dynamic pipeline using static logic

(static HC) in [15], HAT is implemented as shown in Fig. 3.

Three levels hierarchical arbitration is shown as an example and

every hierarchy level uses a low cost four-input arbiter trees.

The output of this asynchronous pipeline circuits is used as the

LUT pointer index to get routing data packet or directly sent

to the Network-on-Chip (NoC). The four-phase QDI circuits

is used here because it’s more compatible with the neuron

handshake circuits and robust. The working flow is divided

by four stages. The first stage is "masking stage", as shown

in Fig. 4a, which adopts the static logic to decouple the long-

term handshaking protocol in neuron handshake circuits, from

the rapid handshaking and release in the arbiter. Compared

with [15], a C-element is added to make the handshaking

strictly follow four-phase handshaking and more robust. The

complete detection (CD) block after masking gate is to detect

if there are still active requests from low level or medium level,

if so, the circuits can’t release the medium level grant or high

level grant respectively. This means the architecture doesn’t

need to encode higher level bits every time when it handles

lower level data packet handshaking, which is more energy

efficient.

The second stage is "arbitration stage", which provides a

one-hot output to the third stage "first static HC pipeline". The

one-hot output from the third stage is sent back as grant signals

to reset arbiter’s input, and at the same time it acts as input of

the QDI encoder. The CD block after "first static HC pipeline"

is used to test if the output is valid. To avoid grant overlapping

problem of arbiter, CD block here is consisted of XOR gates

instead of OR gates. The output data of QDI encoder will be

sent to the last stage "second static HC pipeline", which merges

the encoded data from three levels as a complete data packet

including 6 bits that represents neuron address. The CD block

after the "second static HC pipeline" is used to evaluate the

complete data packet and acknowledge the previous stage.

The outputs of three CD blocks after the QDI encoder of

the "first static HC pipeline" are used to evaluate if the data of

the corresponding level is still valid and reset ack generator if

not, which deasserts Ack signal to enable the "first static HC

pipeline" and complete an entire cycle. As shown in Fig. 4b,

the CD block in the low level resets ack generator whenever a

complete 6 bits data packet is captured by the "second static

HC pipeline". The medium level CD block and high level CD

block can only reset ack generator successfully when there is

no valid neuron request in lower level.

C. Timing Analysis

The proposed arbitration architecture involves three pipeline-

related timing constraints, the first two of which are directly

transformed from those in the original static HC pipeline [15].
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(i) The first timing constraint is the hold timing of the pipeline

register. The closing of latch should be earlier than data reset

on the input channel, which can be simply satisfied since there

is a round-trip communication to reset the input data.

(ii) The second timing constraint is that the current register

should be re-opened later than the input data reset. This timing

constraint is also easy to satisfy because the re-open operation

needs a complete four-phase handshake.

(iii) The third timing constraint is related to the HAT

mechanism, which is in the Ack generator. The V_M and V_L

should be changed faster than the D_H D_M and D_L, otherwise

the Ack generator will be reset wrongly and re-open the "first

static pipeline stage" too early. In practice, this timing constraint

is simple to satisfy, since the CD block after masking registers

provides output whenever the input data is valid, however the

CD block after the QDI encoder needs to wait for the valid



data going through the arbiter, the first static HC pipeline and

the encoder.

D. Experimental results and discussion

Table I II and III shows the comparison of theoretical

calculation results and pre-layout results between HAT and

other arbitration architectures. All arbitration architecture

designs are mapped using a 22FDX FDSOI standard cell

library. Analog mutual exclusion elements (mutexes) in the two-

input arbiters are implemented with standard-cell equivalent

version [16]. Gate size is decided by SPICE simulations and

use set_dont_touch command during synthesis to avoid any

optimization on it. The asynchronous sequential C-elements

are implemented using combinational gates with feedback. We

care more about latency than throughput is because SNNs

is more sensitive to the temporal information. On the other

hand, the neuron handshake circuit usually has several stages

of pipeline buffers and the time interval of two neuron spikes is

longer than the arbitration encoding time, which will relax the

requirement on throughput. All latency results are in typical

operating conditions. The latency of greedy tree in burst mode

is not considered here because it highly depends on the response

time of the neuron, which is the same reason as it in [10]. The

synthesis tool flow is similar with [17]. We use the generic

GTECH Synopsys library to implement the very low-level

but technology-independent specification, which can help us

has full control over the gate-level logic function. During the

synthesis, only gate sizing and buffer insertion are allowed.

The set_max_delay command is applied to all of the timing

paths in order to get high performance. The clock and reset

paths have higher weight of delay constraint during technology

mapping, which is to avoid violations of minimum pulse width

and hold time .

Two different cases (sparse event and full frame burst event)

similar with [10] are considered. A random event request

from N neurons is selected and the latency is measured from

neuron request to output request. In the asynchronous pipeline

circuits we proposed, the output request is the output signal

of last pipeline’s CD block, which represents the complete

neuron address data packet is valid. The average latency is

measured for N neurons. For full frame burst events, all neurons

fire in the short time window, which is the starting point of

latency measurement, then the latency is measured between

staring point and last output request signal. For the theoretical

calculation results of latency, we assume the latency in moving

the handshake signal between two stages is small compared to

the latency of handling the events and normalized by two-input

arbiter’s latency.

For the theoretical calculation results of area, the area cost

is evaluated by the number of two-input arbiter since most

of the area will be occupied by two-input arbiters as neuron

number increases. The latency and area for each arbitration

architecture are estimated based on the expression for 64 and

256 neurons. For HAT, every hierarchical level has a four-

input arbiter which is the same architecture as [16], then 64

neurons and 256 neurons need three hierarchical levels and four

TABLE I: Theoretical and simulated average latency with

sparse events

Average latency with sparse events

Latency N=64 N=256

Binary tree 2 ∗ (log2 𝑁 − 1) 10 (1.7 𝑛𝑠) 14 (2.1 𝑛𝑠)

Greedy tree 2 ∗ (log2 𝑁 − 1) 10 (1.8 𝑛𝑠) 14 (2.3 𝑛𝑠)

Token-ring (𝑁 + 1)/2 32.5 (25.3 𝑛𝑠) 128.5 (102.7 𝑛𝑠)

Hier-ring
√
𝑁 8 (5.7 𝑛𝑠) 16 (9.2 𝑛𝑠)

Hier-tree log2 𝑁 6 (1.7 𝑛𝑠) 8 (2.0 𝑛𝑠)

TABLE II: Theoretical and simulated average latency with

burst events

Average latency with burst events

Latency N=64 N=256

Binary tree 2𝑁 ∗ (log2 𝑁 − 1) 640 (83.7 𝑛𝑠) 3584 (436.9 𝑛𝑠)

Greedy tree 3𝑁 − 6 186 762

Token-ring 𝑁 64 (40.5 𝑛𝑠) 256 (178.4 𝑛𝑠)

Hier-ring 𝑁 + 2
√
𝑁 80 (48.9 𝑛𝑠) 288 (192.9 𝑛𝑠)

Hier-tree 17
16
𝑁 + 3 71 (47.2 𝑛𝑠) 275 (194.4 𝑛𝑠)

hierarchical levels respectively. For HTR, two-level hierarchical

token-ring is used and every level has
√
𝑁 leaf nodes, which

is the same as the experiment in [10].

It is shown that HAT performs best when the arbitration

architecture has to support both sparse event mode and burst

event mode. As shown the pre-layout results in Table I, HAT

offers significant improvements in latency when the event is

sparse, which is the general case for neuromorphic processors.

Thanks to static HC pipeline used in asynchronous encoding

pipeline circuits, HAT can still achieve low latency even if

the event needs to go through several pipeline stages. Fig. 5a

shows the scalability of arbitration latency as the cluster size

increases in sparse events mode. It can be seen HAT has the

lowest latency. For burst event mode, while HAT is slightly

slower than token ring as shown in Table II, token ring has much

higher latency in sparse event case. It can also be observed in

Fig. 5b, in burst event mode HAT has similar latency compared

with token-ring and HTR as the number of neuron increases

and all of these three methods have significantly lower latency

than binary and greedy tree. More importantly, HAT uses much

less two-input arbiters as the number of neuron increases as

presented in Table III, since the number of two-input arbiters

used in other method increases linearly as the neuron core size

increases. We normalized the area cost of the whole arbitration

architecture by the area of two-input arbiter cell as shown in

Table III. The area of HAT doesn’t scale up as the theoretical

calculation, which is because that every neuron handshake

circuits has log2 (𝑁) pull down transistors and every hierarchical

cluster has a pull up circuits for sharing the arbiter. These

circuits results in some extra area cost. Using log2 (𝑁) small

arbiter trees in HAT not only reduces area cost and potentially

increases energy efficiency, but also reduce the probability of

grant overlapping existing in deep arbiter trees.



TABLE III: Normalized area cost

Normalized area cost

Number of two-input arbiter N=64 N=256

Binary tree 𝑁 − 1 63 (72.3) 255 (277.4)

Greedy tree 𝑁 − 1 63 (83.4) 255 (286.7)

Token-ring 𝑁 64 (79.1) 256 (272.5)

Hier-ring 𝑁 + 2
√
𝑁 80 (89.2) 288 (296.3)

Hier-tree 3 log4 𝑁 9 (59.4) 12 (192.4)

(a) Average latency with sparse
events.

(b) Average latency with burst
events.

Fig. 5: The scalability of latency.

IV. Proposed CAM architecture

Given the issues of low performance and low energy

efficiency in the conventional asynchronous CAM architecture,

this section introduces a new CAM architecture with CSCD,

and also the mechanisms of feedback control and speculative

sense in MLSA.

A. CAM Architecture with CSCD

Fig. 6 shows the difference between the conventional asyn-

chronous CAM architecture and the new CAM architecture we

propose. In conventional asynchronous CAM architecture, the

request signal from handshake(HS) block is sent to CAM array

and the dummy CAM entry in parallel. Here we assume the

request and acknowledge signals follow a four-phase handshake

protocol. The always on dummy CAM entry provides the MATCH

signal whenever it receives the request signal, which is used as

the Off signal to terminate charging the ML in all of the CAM

entries and also sent back to the HS block as an acknowledge

signal after a configurable delay line. The delay here results in

high cycle time, which is also a trade-off between performance

and robustness. To solve this key challenge, we propose the

CAM architecture with CSCD block as presented in Fig. 6b.

The first concept of a CSCD sensor was published by [18].

The CSCD sensor is inserted between the logic function unit

and power supply to detect current flow. The sensor produces

a low output when no current flowing through the logic (i.e.,

the logic is not working), and produces a high output when

the combinational logic transitions. Here we use the CSCD

block to evaluate the current flowing through the CAM Array

during search operation.

As shown in Fig. 7, CSCD block includes the current sensing

circuits and HS circuits which does four-phase handshake with
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CAM Array

HS block Ack

SL SLB

Off

Dummy CAM

VDD

(a)

Req

Dummy CAM

CAM Array

HS block Ack

SL SLB
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CSCD
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Fig. 6: (a) Conventional asynchronous CAM architecture; (b)

Asynchronous CAM architecture with CSCD.
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Fig. 7: CSCD block.

HS block of the CAM architecture. The complete working

flow of this CAM architecture is that (a)HS block provides a

request signal after the data is valid on the SL and SLB to

enable the searching operation of the CAM array, and deasserts

the reset signal of register in the CSCD block. (b)Current

sensing block evaluates the current flowing through the CAM

array and generates the rising edge when the CAM array is

doing searching operation. (c)After the Off signal from the

dummy CAM entry terminates charging ML, the falling edge

from current sensing circuits triggers the register to provide

the acknowledge signal. (d)The HS block deasserts the request

signal after it receives the acknowledge signal from CSCD,

which is used to precharge ML in CAM array to GND and

also reset acknowledge signal in CSCD block to finish the

whole four-phase handshake. The current sensing circuits is

basically similar with it in [14]. Usually during the operation

of precharging ML to GND, the current change can’t make

current sensing circuits generate a pulse since the duration

of current change is too short for the high speed amplifier to

detect. The same is true during CAM writing operation.

B. Feedback control and speculative sense

In order to reduce the dynamic power during searching

operation. We propose the mechanisms of feedback control

and speculative sense in MLSA. Fig. 8 shows the CAM array

based on NOR-type CAM cell and current-race MLSA with
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feedback control and speculative sense, which has n CAM

entries and 10 CAM cells in each CAM entry. The feedback

control and speculative sense can reduce power in MATCH and

MISMATCH respectively. In MATCH case, the current source in

MLSA charges the ML until the voltage is higher than the

threshold of the transistor T0, which makes MLSA generate a

high output. Here we use the output signal as a feedback signal

to close current source. Feedback control mechanism makes

the MLSA do adaptive sensing and quickly close charging by

itself when the CAM entry is MATCH, so there is no need to

wait for the Off signal from dummy CAM entry, which usually

reduces around 40% voltage swing on ML in MATCH case.

In MISMATCH case, direct current flowing through ML pull-

down path causes a significant dynamic power consumption.

The basic idea here is still trying to close the current source

as soon as possible. Since the gate voltage of the tail transistor

PD in every CAM cell changes quickly after the data on the SL

and SLB is valid, which can be used to do the early detection

whether the data bit in CAM cell is MATCH or MISMATCH. We

add extra one pin sen_n in every CAM cell as shown in Fig. 8

to sense the matching status before the searching operation(the

Req arrives). The signal from the sense node will go through

the OR gate in the MLSA and directly close the current source

if the corresponding CAM cell is MISMATCH. We can also just

extract the last several sense nodes close to the MLSA to do

speculative sense if the CAM entry has hundreds of bits, which

can reduce the wire routing effort in layout. Assuming the input

data is random and every CAM entry has N bits, the probability

of the MISMATCH bits occurring in last n bits is 2𝑁−2𝑁−𝑛+1
2𝑁

. As

the example presented in Fig. 8, extracting the last 3 bits from

10 bits CAM entry has 87.6% probability closing the current

source in advance when the CAM entry is MISMATCH and test

vector is evenly random.

To make sure the CSCD block can detect any current flow

change under different matching cases, it’s necessary to find

the worst case for CSCD block, current flow change of which

is smallest. Four different matching cases are analyzed here:

a) All of the CAM entries are MATCH, which means all of

the MLSA can adaptively close current source by feedback

control mechanism. b) All of the CAM entries have MISMATCH

bits in the last three CAM cells, then all of the MLSA can

close current source by speculative sense mechanism before the

request signal arrives and the current flow change in this case

is only because of the charging current in dummy CAM entry.

c) The MISMATCH bits in all of the CAM entries only occur in

the first eight CAM cells. The direct current in the pull-down

path from VDD to GND exits in every CAM entry and can’t be

closed by speculative sense mechanism. d) Random matching

cases. The current flow change is smallest when all of the

CAM entries have MISMATCH bits in the last three CAM cells

based on the simulation results. Although it barely occurs in

real application, it’s important to make sure CSCD block has

enough margin to generate the acknowledge signal in this case.

C. Timing Analysis

The CSCD block eliminates the second timing constraint

introduced in section II and acknowledges the HS block after

the CAM array finishes searching operation. In addition to the

first timing constraint, which is that the request signal should be

later than the valid data, there are two timing constraints related

to HS circuits in CSCD block. One is minimum pulse width

of clock signal, which corresponds to the duration of voltage

Vs change and the time interval of two search operations. As

introduced above, the minimum duration of voltage Vs change

occur in the case that all of the CAM entries have MISMATCH

bits in the last three CAM cells. The pulse width of current

sensing circuits output is much longer than the minimum pulse

width of clock signal even if in this case. The time interval of

two search operations is also longer than the minimum pulse

width of clock signal in practice. The other timing constraint is

the minimum pulse width of reset signal, which is also simple

to satisfy. The reason is same as above.

D. Experimental results and discussion

Evaluations are now presented for the new asynchronous

CAM architecture. Results are obtained for two different sizes

of full customized asynchronous CAM arrays with 16 CAM

entries and 512 CAM entries respectively which are mapped

to a 22FDX process FDSOI library. Each of proposed CAM

architecture is compared to the conventional asynchronous

CAM architecture in [6] as the baseline architecture without

CSCD, feedback control and speculative sense in terms of

performance, power and area. Each CAM entry has 11 bits. The

CAM array with 16 CAM entries is shown in Fig. 9. Both CAM

architectures use the same four-phase HS block. We carefully

add dummy cells on the request signal path to make that the

request signal has slightly higher capacitance load than SL and

SLB, which is to satisfy the first timing constraint introduced

in section II. Based on multiple Monte Carlo simulation results,

the size of PD transistors in dummy CAM entry are chosen to be

20% larger than the PD transistors in other CAM entries, which

makes the charging speed of the dummy CAM entry slower

than other MATCH CAM entries. The 8bits configurable delay

line is used in conventional asynchronous CAM architecture

to fine tune the configurable delay. We start from 0 delay
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Fig. 9: Layout of a CAM array with 16 CAM entries.

and increase it incrementally until there is no error signal,

which is usually 30% higher than the delay from request signal

generation to dummy CAM entry output. The sense nodes in

the last three CAM cells are extracted for speculative sense

mechanism since they are closer to MLSA.

Cycle time: Different from the evaluation for arbiters

introduced in section III, we care more about the throughput

of CAM architecture since the configurable delay line results

large latency of asserting and deasserting stage in four-phase

handshake. The average cycle time comparison between the

conventional CAM architecture, proposed CAM architecture

only with CSCD, proposed CAM architecture with feedback

control or speculative sense and the complete proposed CAM

architecture is shown in Fig. 10, which can be directly translated

to throughput performance. The average cycle time is calculated

by multiple times random searching operation in the typical

operating condition, which means the data input and the initial

data content stored in the CAM array are random but the

same for different CAM architectures. The complete proposed

CAM architecture shows improvement for both 16x11 and

512x11 design points: 35.5% and 40.4%, respectively, over the

conventional design. The higher performance improvement can

be got in larger CAM array since the configurable delay line

has to have higher delay as the CAM array size increases. In

contrast, CSCD is not affected a lot by this, which provides

a high acknowledge signal immediately when it detects that

the CAM array finishes the searching operation. The result

validates the benefits of CSCD. An interesting property of

CSCD is that it also benefits from the feedback control and

speculative sense as presented in Fig. 10, since terminating

Fig. 10: Average search cycle time.

charging earlier makes the current go back to zero in advance,

which reduces the delay of providing acknowledge signal from

CSCD block. More importantly, assuming that a configurable

delay line always has higher delay than the searching operation

is not robust because of device mismatch. Asynchronous CAM

architecture with CSCD can eliminate the trade-off between

performance and robustness introduced in Section II.

Area: Post-layout areas are compared for the baseline vs.

new CAM architecture, at both design points. The final layout

area is estimated by summing up the all of cells areas, including

the CSCD and HS block. For 16x11 CAM architecture, the

baseline design has an area of 225.3 𝜇𝑚2, while the new CAM

architecture occupies 245.5 𝜇𝑚2. A 8.9% increase of area is

observed for 16x10 CAM architecture. The area increase is

because of the CSCD block and the OR gate in MLSA , but

there is no area increase in CAM cell even if we add extra one

pin, which is important for scaling up the CAM array size. Such

as for 512×11 CAM architecture, the baseline and new designs

have an area of 7242.1 𝜇𝑚2 and 7620.6 𝜇𝑚2, respectively. The

area overhead increase of the new approach becomes less: only

5.2%.

Energy consumption: This section reports the average energy

consumption of both CAM architectures at 512x11 design point

when all of CAM entries are MATCH, all of CAM entries are

MISMATCH and random data searching. Although the first two

extreme cases barely occur in neuromorphic processors, they

are considered here since we want to specify the different

power saving by different mechanisms. The MISMATCH bits are

distributed randomly in 11 bits CAM entry.

As shown in Fig. 11, only feedback control and CSCD

contribute to energy saving when all of CAM entries are

MATCH, which turns out to be 35.8% lower than the baseline

architecture. When considering all MISMATCH case, the new

CAM architecture taking advantage of speculative sense shows

40.2% energy reduction. The newly designed CAM architecture

based on CSCD, combined with the feedback control and

speculative sense, results in 46.7% energy saving when the

CAM Array is provided random data input, which is the most

energy efficient design choice.



Fig. 11: Normalized average search energy.

V. Conclusion

We proposed a HAT arbitration architecture to meet the de-

mands of low-cost core interfaces for multi-core neuromorphic

processors. In particular, we presented the encoding pipeline

circuits in the core output interface and novel asynchronous

CAM circuits based on a CSCD block, used in the core

input interface. We showed how the latency of new arbitration

architecture is reduced by a factor up to 78.3%, for sparse event

operations, with a lower area cost compared to alternative state-

of-the-art arbitration architectures. The proposed asynchronous

CAM architecture achieves a 40.4% increase in throughput by

CSCD, and a 46.7% energy saving, due to feedback control and

speculative sense mechanisms. The current sensing circuits with

lower sensing latency and power consumption is the direction

to explore in the future, such as using current-mirror amplifier

with local positive feedback to reduce the latency. Another

challenge is to design suitable power rails for digital CAM

array and analog CSCD circuits, which should minimize cross-

talk and area cost.
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