132 research outputs found

    Sea level, paleogeography, and archeology on California\u27s Northern Channel Islands

    Get PDF
    Sea-level rise during the late Pleistocene and early Holocene inundated nearshore areas in many parts of the world, producing drastic changes in local ecosystems and obscuring significant portions of the archeological record. Although global forces are at play, the effects of sea-level rise are highly localized due to variability in glacial isostatic adjustment (GIA) effects. Interpretations of coastal paleoecology and archeology require reliable estimates of ancient shorelines that account for GIA effects. Here we build on previous models for California\u27s Northern Channel Islands, producing more accurate late Pleistocene and Holocene paleogeographic reconstructions adjusted for regional GIA variability. This region has contributed significantly to our understanding of early NewWorld coastal foragers. Sea level that was about 80–85m lower than present at the time of the first known human occupation brought about a landscape and ecology substantially different than today. During the late Pleistocene, large tracts of coastal lowlands were exposed, while a colder, wetter climate and fluctuating marine conditions interacted with rapidly evolving littoral environments. At the close of the Pleistocene and start of the Holocene, people in coastal California faced shrinking land, intertidal, and subtidal zones, with important implications for resource availability and distribution

    A Trans-Holocene Archaeological Record of Guadalupe Fur Seals (\u3ci\u3eArctocephalus townsendi\u3c/i\u3e) on the California Coast

    Get PDF
    Guadalupe fur seals (Arctocephalus townsendi) were decimated by 19th century commercial sealers in the northeastern Pacific and thought to be extinct until 1928 when commercial fishermen caught two adult males at Isla de Guadalupe from a group of up to 60 adults and pups (Wedgeforth 1928, Huey 1930). These two animals were brought to the San Diego Zoo, prompting several zoological expeditions to Isla de Guadalupe in the 1930s and 1940s, but none successfully located Guadalupe fur seals. In 1949, a single male was seen on San Nicolas Island, California (Bartholomew 1950), and in 1954, a small breeding group of animals was found in a cave at Isla de Guadalupe (Hubbs 1956). The population had grown to at least 500 animals in 1967, to about 7,400 animals in 1993, and to 12,176 in 2003, with breeding populations currently confined to Mexico’s Islas de Guadalupe and San Benito (Peterson et al. 1968, Gallo-Reynoso 1994, Gallo-Reynoso et al. 2005, Carretta et al. 2007). Although small numbers of Guadalupe fur seals haul out on the California Channel Islands today, including a female and single pup born on San Miguel Island in 1997, they are vastly outnumbered by California sea lions (Zalophus californianus), northern elephant seals (Mirounga angustirostris), northern fur seals (Callorhinus ursinus), and harbor seals (Phoca vitulina), all of which currently breed on San Miguel Island (Stewart et al. 1993, Melin and DeLong 1999, DeLong and Melin 2002). Archaeological and genetic data suggest, however, that the modern distribution and abundance of Guadalupe fur seals are very different from prehistoric distributions (Walker and Craig 1979, Colten 2002, Etnier 2002a, Walker et al. 2002, Weber et al. 2004)

    Millennial-scale sustainability of the Chesapeake Bay Native American oyster fishery

    Get PDF
    Estuaries around the world are in a state of decline following decades or more of overfishing, pollution, and climate change. Oysters (Ostreidae), ecosystem engineers in many estuaries, influence water quality, construct habitat, and provide food for humans and wildlife. In North America\u27s Chesapeake Bay, once-thriving eastern oyster (Crassostrea virginica) populations have declined dramatically, making their restoration and conservation extremely challenging. Here we present data on oyster size and human harvest from Chesapeake Bay archaeological sites spanning similar to 3,500 y of Native American, colonial, and historical occupation. We compare oysters from archaeological sites with Pleistocene oyster reefs that existed before human harvest, modern oyster reefs, and other records of human oyster harvest from around the world. Native American fisheries were focused on nearshore oysters and were likely harvested at a rate that was sustainable over centuries to millennia, despite changing Holocene climatic conditions and sea-level rise. These data document resilience in oyster populations under long-term Native American harvest, sea-level rise, and climate change; provide context for managing modern oyster fisheries in the Chesapeake Bay and elsewhere around the world; and demonstrate an interdisciplinary approach that can be applied broadly to other fisheries

    A new legacy: potential of zooarchaeology by mass spectrometry in the analysis of North American megafaunal remains

    Get PDF
    Museum legacy collections, often derived from large-scale archaeological excavations, can serve as paleoenvironmental archives of Late Pleistocene megafaunal composition and dynamics. Many of these collections, however, contain large quantities of highly fragmented and morphologically indistinct bones that cannot be identified to a specific taxon and are therefore of limited use to paleoenvironmental and archaeological analyses. Here, we explore the potential of Zooarchaeology by Mass Spectrometry (ZooMS) to identify fossil bone fragments and complement morphological identifications in legacy collections housed at the Smithsonian’s National Museum of Natural History. To undertake this work, we collected fragmented bone specimens of Late Pleistocene megafauna from six archaeological sites in Colorado that are currently housed in the Department of Anthropology, and then performed pilot ZooMS screening. Our analysis successfully retrieved taxonomic information from 80% of the analyzed material, highlighting the potential of future ZooMS studies on museum collections to investigate human-megafaunal interactions in late Pleistocene North America

    Social science perspectives on drivers of and responses to global

    Full text link
    This article provides a review of recent anthropological, archeological, geographical, and sociological research on anthropogenic drivers of climate change, with a particular focus on drivers of carbon emissions, mitigation and adaptation. The four disciplines emphasize cultural, economic, geographic, historical, political, and social‐structural factors to be important drivers of and responses to climate change. Each of these disciplines has unique perspectives and makes noteworthy contributions to our shared understanding of anthropogenic drivers, but they also complement one another and contribute to integrated, multidisciplinary frameworks. The article begins with discussions of research on temporal dimensions of human drivers of carbon emissions, highlighting interactions between long‐term and near‐term drivers. Next, descriptions of the disciplines\u27 contributions to the understanding of mitigation and adaptation are provided. It concludes with a summary of key lessons offered by the four disciplines as well as suggestions for future research

    An Anthropocene Without Archaeology—Should We Care?

    Get PDF
    For more than a decade, a movement has been gathering steam among geoscientists to designate an Anthropocene Epoch and formally recognize that we have entered a new geological age in which Earth’s systems are dominated by humans. Chemists, climatologists, and other scientists have entered the discussion, and there is a growing consensus that we are living in the Anthropocene. Nobel Prize-winning atmospheric chemist Paul Crutzen (2002a, 2002b; Crutzen and Stoermer 2000) coined the term, but the idea that humans are a driver of our planet’s climate and ecosystems has much deeper roots. Italian geologist Antonio Stoppani wrote of the “anthropozoic era” in 1873 (Crutzen 2002a), and many others have proposed similar ideas, including journalist Andrew Revkin’s (1992) reference to the “Anthrocene” and Vitousek and colleagues (1997) article about human domination of earth’s ecosystems. It was not until Crutzen (2002a, 2002b) proposed that the Anthropocene began with increased atmospheric carbon levels caused by the Industrial Revolution in the late eighteenth century (including the invention of the steam engine in A.D. 1784), however, that the concept began to gain serious traction among scientists and inspire debate

    Adaptive divergence despite strong genetic drift: genomic analysis of the evolutionary mechanisms causing genetic differentiation in the island fox (\u3ci\u3eUrocyon littoralis\u3c/i\u3e)

    Get PDF
    The evolutionary mechanisms generating the tremendous biodiversity of islands have long fascinated evolutionary biologists. Genetic drift and divergent selection are pre- dicted to be strong on islands and both could drive population divergence and specia- tion. Alternatively, strong genetic drift may preclude adaptation. We conducted a genomic analysis to test the roles of genetic drift and divergent selection in causing genetic differentiation among populations of the island fox (Urocyon littoralis). This species consists of six subspecies, each of which occupies a different California Chan- nel Island. Analysis of 5293 SNP loci generated using Restriction-site Associated DNA (RAD) sequencing found support for genetic drift as the dominant evolutionary mech- anism driving population divergence among island fox populations. In particular, pop- ulations had exceptionally low genetic variation, small Ne (range = 2.1–89.7; median = 19.4), and significant genetic signatures of bottlenecks. Moreover, islands with the lowest genetic variation (and, by inference, the strongest historical genetic drift) were most genetically differentiated from mainland grey foxes, and vice versa, indicating genetic drift drives genome-wide divergence. Nonetheless, outlier tests identified 3.6–6.6% of loci as high FST outliers, suggesting that despite strong genetic drift, divergent selection contributes to population divergence. Patterns of similarity among populations based on high FST outliers mirrored patterns based on morphology, providing additional evidence that outliers reflect adaptive divergence. Extremely low genetic variation and small Ne in some island fox populations, particularly on San Nicolas Island, suggest that they may be vulnerable to fixation of deleterious alleles, decreased fitness and reduced adaptive potential
    corecore