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Sea-level rise during the late Pleistocene and early Holocene inundated nearshore areas in many parts of the
world, producing drastic changes in local ecosystems and obscuring significant portions of the archeological re-
cord. Although global forces are at play, the effects of sea-level rise are highly localized due to variability in glacial
isostatic adjustment (GIA) effects. Interpretations of coastal paleoecology and archeology require reliable
estimates of ancient shorelines that account for GIA effects. Here we build on previous models for California's
Northern Channel Islands, producing more accurate late Pleistocene and Holocene paleogeographic reconstruc-
tions adjusted for regional GIA variability. This region has contributed significantly to our understanding of early
NewWorld coastal foragers. Sea level that was about 80–85m lower than present at the time of the first known
human occupation brought about a landscape and ecology substantially different than today. During the late
Pleistocene, large tracts of coastal lowlands were exposed, while a colder, wetter climate and fluctuating marine
conditions interacted with rapidly evolving littoral environments. At the close of the Pleistocene and start of the
Holocene, people in coastal California faced shrinking land, intertidal, and subtidal zones, with important
implications for resource availability and distribution.

© 2015 University of Washington. Published by Elsevier Inc. All rights reserved.

Introduction

The late Pleistocene and earlyHolocene are of great interest to coastal
archeologists andQuaternary scientists—a timewhen the Americaswere
first colonized (Dillehay, 2009; Meltzer, 2009) and evidence for the use
of coastal resources all over the world intensified (Erlandson, 2001;
Bailey and Milner, 2002). However, rising sea level since the last glacial
maximum (LGM) has complicated our understanding of this time period
by drowning former coastlines and inundating coastal archeological sites
(Shackleton et al., 1988; Westley and Dix, 2006; Bailey and Flemming,
2008). Accurate reconstructions of ancient shorelines allowarcheologists
to understand better the environments in which people lived, to target
areas where older sites might still be above water (i.e., Fedje et al.,
2005; Shugar et al., 2005; McLaren et al., 2014), and to explore more
efficiently the underwater environment for archeological sites.

Shorelines are complicated places, with dynamic patterns of erosion
and deposition acting alongside tectonic and isostatic uplift and subsi-
dence. Applications of global eustatic sea-level curves or relative sea
level (RSL) curves derived from distant locations to bathymetric maps
are useful for understanding general patterns in paleogeography, but

not necessarily the precise timing of important local changes. Higher
resolution models of Earth and ice properties can produce RSL curves
that account for sea level and isostatic variability at the regional scale
(i.e., southern California) and that allow for more detailed interpreta-
tions of regional ecological change and settlement patterns (i.e., Fedje
et al., 2005; Bailey et al., 2007; Lambeck et al., 2011; Ghilardi et al.,
2014; McLaren et al., 2014).

California's Northern Channel Islands (NCI) have contributed signif-
icantly to our understanding of early coastal human adaptations in the
Americas, and have also been a focus of research into a possible coastal
migration route from Asia into the Americas (Erlandson et al., 2007,
2011). The NCI are separated from the California mainland by the
Santa Barbara Channel (Fig. 1). Most of the coast of the NCI is character-
ized by rocky shores and sea cliffs, leading inland either tomountainous
slopes or emergent marine terraces dissected by steep-sided canyons.
Rocky intertidal zones and subtidal kelp forest ecosystems are exten-
sive, with sandy pocket beaches that form in the lee of headlands
(Schoenherr et al., 1999). During the LGM, lowered sea level connected
the NCI into a single island known as Santarosae (Orr, 1968) and
exposed wide tracts of the now submerged insular shelf.

Accurate reconstructions of late Pleistocene and early Holocene
landscapes are essential for interpreting the existing archeological re-
cord and locatingnew sites to expandour understanding of early coastal
lifeways. Researchers in southern California have long been interested
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in reconstructing ancient shorelines (Orr, 1968; Nardin et al., 1981;
Inman, 1983; Johnson et al., 1983; Porcasi et al., 1999; Kinlan et al.,
2005; Masters, 2006; Kennett et al., 2008), and recent research has uti-
lized a model of glacial isostatic adjustment (GIA) that explains sea-
level fluctuations elsewhere in southern California (Muhs et al., 2012).
Here we build on these studies, using a series of GIA-corrected RSL
curves for the NCI to produce more accurate estimates of shoreline
and landscape evolution after the LGM (Clark et al., 2014). The GIA cor-
rection produces significantly different RSL curves across the NCI, with
the highest rates of change in the southwest portion of the island
chain and the lowest in the northeast. In situations where modeling is
the most practical method for reconstructing shorelines, the use of
local GIA-corrected RSL curves allows for more accurate estimates of
change through time and offers an approach that can be applied to
shoreline reconstructions around the world.

Methods

For interpreting paleoecology, resource distribution, and settlement
patterns at the scale of the NCI, modeling is themost practical approach
to reconstructing submerged paleoshorelines. Intensive underwater
field studies to identify shorelines, including mapping with a submers-
ible or using acoustic technology, are most appropriate at smaller,
local scales (e.g., Chaytor et al., 2008), but they are expensive and time
consuming. The NCI steep, narrow continental shelf is unlikely to
preserve shorelines except during long still-stands, such as those that
created the now emergent marine terraces. A recent study attempted
to map paleoshorelines on the NCI insular shelf using a variety of
multibeam bathymetry data sources, but found that shorelines were
likely to be delineated only in limited areas in the eastern part of the
NCI (Chaytor et al., 2008).

Whenmodeling is the only way to reconstruct shoreline locations, it
is important to have accurate RSL curves. In some cases, these can be de-
rived from local features that are tightly constrained by water depth,
such as coral, peat, or marsh. However, those features are not available
on the NCI, so shoreline reconstructions must rely on modeled RSL
curves combined with bathymetric maps. Recent research has demon-
strated that eustatic sea-level curves generated from far-field locations
such as New Guinea or Barbados do not accurately reflect RSL change

in southern California (Muhs et al., 2012; see also Mitrovica and
Milne, 2003; Kendall et al., 2005). GIA effects are more important in
near-field to intermediate-field regions such as California because of
closer proximity to large ice sheets.

Although the volume of oceanwater at a global scale is inversely re-
lated to the volume of glacial ice, the distribution of oceanwater is con-
trolled by more complex factors that vary at centennial and millennial
time scales (Mitrovica and Milne, 2003). A study of sea-level history
on San Nicolas Island (~75 km to the south of the NCI) over the early
part of the last interglacial–glacial cycle (120 to 40 ka) showed that rel-
ative sea level differed from sites that are distant from North American
Pleistocene ice sheets (e.g., New Guinea and Barbados), and identified a
model of mantle viscosity (dubbed the LMmodel) that more accurately
predicted sea-level high stands in southern California during that period
(Muhs et al., 2012). A second study extended and confirmed that model
during the post-LGM period, using the same pairing of ice and Earth
models applied to much of the west coast of North America (Clark
et al., 2014). Those samemodels, based on the LMviscosity profile char-
acterized by a lithospheric thickness of 96 km, upper mantle dynamic
viscosity of 5 × 1020 Pa s, and lower mantle dynamic viscosity of
5 × 1021 Pa s (Mitrovica and Milne, 2003; Kendall et al., 2005), are
used at higher resolution for this study.

These variations in the Earth's lithosphere andmantle, and the effect
they have on the distribution of water in the ocean, result in small but
significant variability in rates of sea-level change across the NCI. To cap-
ture that variability, sea-level curves were produced at approximately
4-km intervals across the NCI platform. We then used a simple, inverse
distance-weighted interpolation to produce relative sea-level surfaces
for 48 time slices from 20 ka to the present. These surfaces were then
subtracted from modern bathymetric and topographic digital elevation
models (DEMs) produced by NOAA's Tsunami Inundation Project and
the National Geophysical Data Center (Carignan et al., 2009). Shorelines
were estimated by extracting the 0-m contour from the new DEM. All
geographic analyses were performed using ESRI's ArcGIS v. 10.2.1

Nearshore ecosystems around the NCI are controlled primarily by
depth. Kelp forests are common marine ecosystems in the region and

Figure 1. Location and topography (indicated by gray shading), of the Northern Channel Islands, including archeological sites (circles) dated to before 11,000 cal yr BP and the location of
the Abalone Rocks Marsh. Data for DEM obtained from the National Elevation Dataset.

1 Any use of trade, product, or firm names is for descriptive purposes only and does not
imply endorsement by the U.S. Government.
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require shallow, subtidal, rocky surfaceswithin thephotic zone for algae
attachment. Following Kinlan et al. (2005), the surface available for kelp
forest was estimated as the area extending from 1 to 25 m belowmean
sea-level, and the intertidal zone was estimated as the surface extend-
ing from 1m above to 1m belowmean sea level. River courses were es-
timated using the hydrological modeling tools in ESRI's ArcGIS v. 10.2,
which use elevation and slope to identify the direction that water
should flow through each 30 × 30 m cell and then identify the most
rapid routes downslope. Cells that collect the most water are isolated
and connected together to form streams (deSmith et al., 2007, p. 280).
This process may yield inaccuracies on the flat coastal plain, and should
be considered as a first approximation of ancient stream courses. The
potential location of these streams, however, may prove fruitful for
targeting future underwater archeological research in the region.

There are uncertainties in both the ice and Earthmodels used to pro-
duce the relative sea-level curve. Although the Earth model used here
has been well constrained through the work of Muhs et al. (2012) and
Clark et al. (2014), continuing research may refine aspects of the ice
model. The modern DEM has a relatively high degree of accuracy, espe-
cially for the shallow shelf areas of interest to this study. Vertical accura-
cy is estimated to within 5% of water depth, and horizontal accuracy
varies between 2 and 10 m, with greatest accuracy in nearshore areas
(Carignan et al., 2009). Nevertheless, the modern DEM is not necessarily
a good representation of ancient topographic and bathymetric features,
because tectonic and sedimentary processes have influenced landforms
around the NCI. However, over the relatively short geological time span
considered here, these factors should have had limited impact on the re-
construction of NCI paleoshorelines. Although there are exceptions on
the northern slope of the NCI platform, the volcanic rocks that dominate
many parts of the NCI bedrock geology are resistant to erosion and little
sediment has accumulated on most of the continental shelf during the
Holocene (Norris and Webb, 1976; Warrick and Farnsworth, 2009).
Evidence from across the NCI suggests that tectonic uplift of the NCI plat-
form has been between 0.1 and 0.2 m/ka over the past ~120 ka (Pinter
et al., 1998a, 1998b, 2003; Muhs et al., 2014). This would potentially
raise the modeled coastline between 2 and 4 m at the LGM at (~20 ka),
and incorporation of these small values into the paleogeographicmodels
presented here is not significant. The use of GIA-corrected sea level sur-
faces is only the first step inmore accuratelymodeled ancient shorelines.
Future research should incorporate regional tectonic and sedimentary
processes that also influence shoreline configuration, and complementa-
ry field-based research into local shoreline positions.

Most of the ages reported in this paper are modeled calendar ages,
given in thousands of years before 1950 with the notation “ka.” Ages
that reference specific, known events, such as archeological sites or
paleontological materials, are derived from calibrated radiocarbon
ages and given the notation “cal yr BP.” These dates are available in
the cited literature, and when necessary were recalibrated at 2 sigma,
using the IntCal13 or MarineCal13 curves (Reimer et al., 2013).

Results

Our model reconstructs paleogeography from 20.0 ka through the
late Holocene, but our discussion and interpretation focus on the time
when sea level was rising, before ca. 6.0 ka. The last sea-level minimum
occurred on the NCI at 20.0 ka, when relative sea level reached−111m
on the western end of the platform (33°48′N, 120°36′W) and −101 m
on the eastern end (34°12′N, 119°16′W) (Table 1, Fig. 2). Sea level
rose steadily throughout the late Pleistocene and early Holocene, with
the highest rates of sea-level change (to as high as 22 m per 1000
years) from 13.5 to 8.0 ka (Fig. 3). The Younger Dryas cold period is vis-
ible as a slight reduction in rates of RSL rise, as well as reduced rates of
change in island landmass, reef extent, and shoreline length. Although
the rate of RSL change declines significantly after 8.0 ka, it does not flat-
ten out until about 2.0 ka because of the continuing impact of glacial iso-
static adjustments throughout the Holocene. The GIA model suggests
that only about 20 m of sea-level rise occurred after 8.0 ka in the west,
and 15 m in the east. Sea level was within 2 m of modern throughout
the NCI by about 2.0 ka.

Shoreline reconstructions indicate that Santarosae reached its
greatest extent of 2147 km2 at 20.0 ka, then shrank rapidly and steadily
until the islands began to be separated by water just after 11.0 ka.
Anacapa Island separated from the other islands between 10.9 and
10.3 ka, followed by Santa Cruz Island between 9.7 and 9.4 ka. The
final separation of Santa Rosa and SanMiguel islands occurred between
9.4 and 9.1 ka (Fig. 4). These shoreline separations were gradual pro-
cesses, with the islands separated by unstable and rapidly changing
shallow water environments that are not analogous to anything on
the NCI today.

The islands today are made up of about 24% (507 km2) of the total
LGM land area. Rates of land loss peaked between about 11.5 and
8.8 ka, when the islands lost more than 200 km2 of land per
1000 years (Fig. 3). That rate decreased steadily until about 6.0 ka, at
which time the islands lost only about 30 km2 per 1000 years. The

Table 1
Summary of key variables related to sea-level change, at approximately 1000-year intervals during the period of known human occupation. RSL-A occurs at 33°48′N,−120°36′W, and RSL-B
occurs at 34°12′N,−119°16′W.

Age (ka) RSL-A
(m below MSL)

RSL-B
(m below MSL)

Shoreline length
(km)

Island area
(km2)

Shortest distance to
mainland (km)

Subtidal zone
(km2)

Intertidal
zone (km2)

20.00 −111 −101 359 2147 7.75 225 30
16.95 −100 −94 374 1877 8.34 413 46
16.00 −96 −87 390 1835 8.38 438 56
14.97 −95 −91 399 1768 8.41 484 65
13.94 −89 −85 373 1585 8.95 555 51
13.09 −81 −74 338 1465 9.21 607 34
12.00 −71 −65 330 1315 9.60 556 29
10.91 −61 −56 321 1186 10.831 391 25
9.05 −32 −28 382 820 13.09 317 28
7.09 −19 −16 349 646 17.97 334 24
6.08 −12 −10 332 582 18.77 322 18
6.00 −9 −8 317 558 19.25 304 16
4.83 −7 −5 301 540 19.08 286 13
3.66 −4 −3 284 527 19.08 266 10
2.98 −3 −2 280 522 19.08 257 10
2.00 −2 −1 288 517 19.10 249 10
1.00 −1 −1 303 512 19.12 242 7
0.00 0 0 298 511 19.20 229 3
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extent of subtidal surface available for kelp forest peaked around 13.0 ka
at about 600 km2 when the island's shape and offshore bathymetry
were optimal, with much of the flat, coastal plain drowned under
shallow water. It decreased rapidly to about 315 km2 at 9.0 ka, and
then decreased slightly throughout the Holocene to reach about
220 km2 today (Figs. 2 and 5). The most rapid rates of reef area loss
occurred just after the Younger Dryas and remained high through
about 10.0 ka.

Changes in the length of the shoreline, and therefore in the potential
extent of rocky intertidal ecosystems, have been much more variable
through the late Pleistocene and Holocene (Fig. 3). Shoreline extent
was at its greatest (~400 km) at about 15 ka, and decreased through
the end of the Pleistocene. It increased again to about 380 km around
9 ka as the larger islands were separated by water, and then decreased
steadily through the rest of the Holocene (Table 1).

Discussion

Comparing models of NCI sea-level rise

Previous shoreline models in southern California (Fig. 2) have relied
either on global sea-level reconstructions from tectonically stable
locations far from Pleistocene ice sheets (Porcasi et al., 1999; Masters,
2006; Kennett et al., 2008) or on a curve produced for the Santa Monica
Basin, offshore from Los Angeles (Nardin et al., 1981; Graham et al.,
2003; Kinlan et al., 2005). The latter are based on a seismic-
stratigraphic analysis of the continental shelf paired with five uncali-
brated Holocene-age radiocarbon dates from littoral shellfish (Nardin
et al., 1981). This curve posits some dramatic sea-level rises, falls, and
still-stands throughout the late Pleistocene and Holocene that should
be confirmed in the field before being applied to the NCI. Although
tectonic and isostatic crustal changes certainly have influenced local
sea-level rise in southern California, there is no evidence that local faults
or any other mechanisms produced these changes. When used for
shoreline modeling, the Nardin et al. (1981) curve produces a much
more rapid reduction in island size and a peak in reef extent several
thousand years earlier (Fig. 2) (Kinlan et al., 2005).

The global sea-level reconstructions used by Porcasi et al. (1999),
Masters (2006), and Kennett et al. (2008) are based on empirical obser-
vations from locations in the Atlantic, Pacific, and Caribbean. These are
broadly in agreement with the modeled curve for the NCI but with
some important differences (Fig. 2). These empirically based curves
generally estimate the LGM low stand at about −120 m, while the
model used here varies from −110 m below MSL in the southwest
part of the study area to −100 m in the northeast. Subsequent rise oc-
curs faster in the distant locations, and the curves converge during the
last fewmillennia of the Pleistocene. This is when Santarosae is divided
into individual islands, and so the new curve coincidentally produces
similar times for island separation to earlier estimates (Fig. 4) (Porcasi
et al., 1999; Kennett et al., 2008).
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The most significant difference between the model presented here
and previous sea-level curves used in the NCI is a surprisingly large dif-
ference in RSL along a gradient from the southwest to the northeast of
the NCI platform. This is the result of variability in the GIA corrections
across space. For example, at 15.0 ka, the application of a single, uniform
RSL curve to the entire NCI would significantly alter the shape and loca-
tion of the northern shore of Santarosae (Fig. 6). Even at the relatively
limited regional scale of the NCI, the accommodation of a variable GIA
correction is essential to produce more reliable estimates of shoreline
locations (see also Clark et al., 2014).

Paleogeography and ecological change through time

Terrestrial environments
New shoreline and elevationmodels presented here have important

implications for paleoecology on the NCI, including adjustments in the
timing of island separation (Fig. 4) and models of potential stream
courses (Fig. 5). The physical landscape of late Pleistocene Santarosae
was unlike the modern NCI, with a broad coastal plain that persisted
on the western islands well into the early Holocene (Fig. 5). This
coincides with an LGM and late Pleistocene climate that was generally
wetter and cooler than modern (Heusser, 1998; Stott et al., 2002), and
these distinct physical and climatic conditions supported somewhat
different ecosystems than those present today.

Pollen from the Santa Barbara Basin and other locations around
southern California suggest that conifer forests expanded on the NCI
and elsewhere in southern California during the late Pleistocene
(Heusser, 1998; Anderson et al., 2010). On the NCI, the large, flat coastal
plain (Fig. 5) may have been a favorable habitat for Bishop pine (Pinus
muricata), which prefers sandy soils and is an effective colonizer
(Junak et al., 2007). This hypothesis is supported by limited pollen and
macrobotanical material from Daisy Cave on San Miguel Island (West

and Erlandson, 1994; Erlandson et al., 1996), Arlington Canyon on
Santa Rosa Island (Kennett et al., 2008), and Canada de los Sauces on
Santa Cruz Island (Anderson et al., 2010). On the other hand, conifer
pollen is rare from the beginning of the upland Soledad Pond sequence
on Santa Rosa Island, beginning 12.0 ka (Anderson et al., 2010).
Anderson et al. (2010) suggest that pine may have been restricted to
lower elevations such as the coastal plain, which agrees with these pa-
leogeographic reconstructions. In addition, much of the northwestern-
most part of this area, north of San Miguel Island, may have been
covered by active sand dunes (Muhs et al., 2009).

Oak and other woodland communities are limited today on the NCI
(except on parts of Santa Cruz Island), and the pollen core from Soledad
Pond (Anderson et al., 2010) suggests that this was true at least through
the last two millennia of the Pleistocene. Woodland taxa today are
found only on protected, north-facing slopes and canyon bottoms of
the two larger islands, although individual oak trees are scattered in
some shrubland and grassland communities. Neither climate change
nor the paleogeographic changes modeled here are likely to have
changed in distribution significantly. However, the largest perennial
streams host riparian woodlands below about 460 m in elevation, in-
cluding deciduous species that are rare elsewhere (Junak, et al., 2007).
Hydrologic modeling suggests that these habitats, although never ex-
tensive, expanded significantly at the LGM and shifted into modern dis-
tributionswhen the coastal plain disappearedduring the earlyHolocene
(Fig. 5). Deciduous woodlands may have expanded with streams, but
likely were never dominant features on the landscape.

The dramatic changes in land area and the separation of the islands
during the terminal Pleistocene and early Holocene (Figs. 4 and 5)
also had important implications for terrestrial animals, including
pygmy mammoth (Mammuthus exilis) and Columbian mammoth
(Mammuthus columbi). The extirpation of mammoths occurred around
13,000 cal yr BP, a time of rapid sea-level rise and dramatic reductions in
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the coastal plain habitat (Figs. 2 and 3) that would have been ideal for
mammoths (Agenbroad et al., 2005; Rick et al., 2012). The Channel
Islands contain few terrestrial mammals and the precise timing of
the appearance of island gray foxes (Urocyon littoralis), island spotted
skunks (Spilogale gracilis), and island deer mice (Peromyscus
maniculatus) is the subject of considerable debate. The predecessors of
all three animals may have colonized the islands during the human
era (e.g., 13,000 cal yr BP or later) around the time Santarosae was
becoming four separate islands or after the break-up (Johnson et al.,
1983; Rick, 2013). Recent genetic research indicates that the island
foxes diverged from their mainland ancestors between 9.2 and 7.1 ka,
towards the end of the breakup of Santarosae, suggesting that these
animalsmay have arrived on theNCI during a period of considerable pa-
leogeographic and ecological instability (Hofman et al., in press). Shore-
line changes may have also impacted coastal dune ecosystems,
terrestrial land bird distributions (e.g., island scrub-jays, Aphelocoma
insularis), pinniped haul-outs and rookeries, and seabird breeding
colonies, topics that require additional research in light of the new
GIA RSL shoreline reconstructions.

Littoral environments
The location and extent of intertidal and subtidal ecosystems were

controlled by sea-level rise during much of the study period. Rocky
shores probably emerged as sea level dropped and fluvial sediment
was carried out of the littoral system. As sea level began to rise, estuary
systems likely evolved as rivermouths that existed during the LGM sea-
level low-stand were drowned by marine transgression, and then
transformed to marsh and lagoon systems as sea level stabilized
(Graham et al., 2003). Sandy beaches probably developed later, when
sediment was able to accumulate in the nearshore environment after
sea level stabilized and stream valleys infilled (Masters, 2006).

Paleogeographic reconstructions provide more detail for this
generalized description of ecological change. Shoreline length, which
determines the spatial extent of intertidal ecosystems, peaked around
14.5 ka, decreased throughout the late Pleistocene, and increased
again as the islands begin to separate around 11.0 ka (Table 1). Subtidal
surface area, which is measured as the area between 1 and 25 m below
sea level and approximates the potential extent of kelp forest (following
Kinlan et al., 2005) peaked slightly later, around the time of the first
knownhuman occupation, about 13.0 ka (Fig. 2).More research is need-
ed into the impact of particularly rapid sea-level rise on intertidal and
subtidal ecosystems, which may have been less productive during
times of rapid change in geomorphology if ecosystems did not have
time to develop fully (Fig. 3).

A gently sloping nearshore shelf and wetter climate during the late
Pleistocene may have been a good setting for estuarine and marsh eco-
systems at the mouths of larger streams. When Santarosae existed, the
streams in Old Ranch Canyon on eastern Santa Rosa Island and Christy
Canyon on western Santa Cruz Island likely joined together before

entering the ocean on the southern side of the former Santa Rosa–
Santa Cruz isthmus (Fig. 5). The large, protected bay on the southern
side of this isthmus probably persisted until the islands separated
about 9.5 ka. Although there is no direct evidence for the ecological
community this bay supported, it is possible that a terminal Pleistocene
shell at CA-SRI-708, from a clam species (Chione undatela) most com-
monly found in estuarine environments, was harvested from this area
(McLean, 1978; Rick et al., 2013).

A fluctuating marine climate operated alongside these changes in
the nearshore paleogeography. There is a general trend of warming
sea surface temperatures (SSTs) from the LGM through the Holocene
in the Santa Barbara Channel region (Kennett et al., 2000; Hill et al.,
2006; Hendy, 2010), but a reduction in the strength of the California
Current may have reduced marine productivity throughout the eastern
North Pacific in the millennia following the LGM (Sabin and Pisias,
1996). Overall marine productivity rose during the Bølling–Allerød
warm period (15.0–12.9 ka), just as the potential extent of kelp forest
was at its greatest but rates of change in available subtidal area were
extremely high. The brief paleogeographic stabilization during the
Younger Dryas period coincided with a reduction in productivity
(Kennett et al., 2008). The Holocene was characterized by alternating
periods of warm SSTs/lower productivity and cool SSTs/higher produc-
tivity (Kennett et al., 2007; Grelaud et al., 2009), alongside a decreasing
trend in the area available for both rocky intertidal and kelp forest
ecosystems.

The archeological record provides paleoecological data that can help
refine these patterns. Estuarine shellfish are found in archeological sites
on eastern Santa Rosa Island between about 11,000 and 5900 cal yr BP,
where they are associated with the emergence of the Abalone Rocks es-
tuary (Fig. 1) (Rick et al., 2005b, 2013; Rick, 2009). However, shoreline
reconstructions suggest that this would have been a very dynamic envi-
ronment and that other estuaries may have formed in the embayments
that emerged on the southern shore of Santarosae during the late Pleis-
tocene (Fig. 5). The presence of aquatic birds at the ca. 11,700 year old
SRI-512 site on northwestern Santa Rosa Island similarly suggests that
the mouth of nearby Arlington Canyon may have supported a freshwa-
ter marsh at this time (Erlandson et al., 2011). Small numbers of Pismo
clams (Tivela stultorum), a sandy shore species (McLean, 1978), are
found around 9200 cal yr BP at CA-SRI-6 (Erlandson et al., 1999)
and CA-SRI-568 (Reeder-Myers, 2014a), and around 7500 cal yr BP at
CA-SCRI-109 (Glassow et al., 2008), but are not widespread on the
islands until after 5000 cal yr BP (Rick, 2009). These early dates for
sandy shore species probably reflect the rapidly evolving littoral
environment, where small, localized ecosystems could emerge and
disappear over short periods of time.

During the middle and late Holocene, sea-level rise probably had a
reduced impact on ecology. Rates of change approach zero in RSL rise,
land inundation, and intertidal and subtidal surface loss after about
6.0 ka (Figs. 2 and 3). Shoreline length continued to fluctuate, but at
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Figure 6.WhenGIA-corrected RSL curves aremodeled at a high spatial resolution of about 4 km, they yield significantly different results than a uniformRSL curve applied across the entire
region. In this example at 15.00 ka, the GIA-corrected sea level varies from 92 to 87 m belowMSL, and produces the shoreline represented by light gray. If a uniform value of 92m below
MSL (which is modeled at the location indicated by the star) were applied to the entire NCI, the result is the shoreline represented by dark gray. The uniform RSL model would fail to
identify bays that appear to have formed along the northern shore of modern Santa Cruz Island, and would misdirect efforts to locate early archeological sites.
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lower frequencies than during previous millennia. As human popula-
tions increased during the second half of the Holocene (Rick et al.,
2005a; Glassow et al., 2007), their influence may have replaced paleo-
geography in its destabilizing effect on terrestrial and nearshore
ecosystems.

Archeological implications

The first people on the NCI lived in a different landscape than what
is present today. The earliest evidence for human occupation on the
islands is human remains dated to ~13,000 cal yr BP from the
Arlington Springs site (CA-SRI-173) on northwestern Santa Rosa Island
(Orr, 1962, 1968; Johnson et al., 2002, 2007). This occupation is well be-
fore the islands began to separate (Fig. 4), and coincides roughly with
the peak in subtidal reef area (Fig. 2). We have little direct evidence
for how people were using terrestrial resources during this period,
although recent research indicates that corms and small seeds contrib-
uted to human diets on the islands throughout the Holocene (Reddy
and Erlandson, 2012; Gill, 2014). The earliest known archeological
sites on theNCI are foundonwestern Santa Rosa andeastern SanMiguel
islands adjacent to a broad and relatively shallow stretch of insular shelf
(Fig. 1). This is due in part to a research focus on these two islands and
field strategies that focused on interior caves, freshwater springs,
toolstone sources, and broad viewsheds (Erlandson et al., 2011; Rick
et al., 2013). Most of the evidence for this earliest period of human
occupation was likely eroded by rising sea level.

A series of sites on the emergent marine terraces of Santa Rosa and
SanMiguel islands,many ofwhich include Paleocoastal stemmedpoints
and crescents, were occupied from about 12,200 to 11,000 cal yr BP, and
suggest a relatively small population relying on diverse marine food
sources including birds, fish, shellfish, and sea mammals (Erlandson
et al., 1996, 2011; Braje et al., 2013; Erlandson, 2013; Glassow et al.,
2013; Jew et al., 2013; Rick et al., 2013). Some of these sites are close
to high-quality chert cobbles exposed in marine terrace deposits, and
many sites also contain heavily eroded shell middens, numerous
chipped stone tools, and debris from the production of stone tools
(Erlandson and Braje, 2008; Erlandson et al., 2011). Other sites are
deeply buried under Holocene sediments and contain diverse faunal
and artifactual assemblages (Erlandson et al., 2011), while still others
have produced only chipped stone tools diagnostic of Paleocoastal occu-
pations (Braje et al., 2013; Rick et al., 2013). This diversity of site types
suggests a flexible settlement strategywell adapted to the changing en-
vironments of the late Pleistocene, including reducing land mass and
coastal plain, shrinking subtidal surface area, and decreasing shorelines
and intertidal zones.

Between 10,000 and 8000 cal yr BP, sites become more common on
the islands, and at least 42 have been documented to date. These are
mostly small shell midden sites located close to the contemporary
coast (Erlandson et al., 2009, 2015). Subsistence continued to focus on
rocky intertidal shellfish, although a small paleoestuary on eastern
Santa Rosa Island attracted people throughout much of the early Holo-
cene and terminal Pleistocene (Rick et al., 2005b). Evidence for fishing
continues to be limited, except at some sites such as Daisy Cave (Rick
et al., 2001), and evidence for hunting is relatively rare in faunal and ar-
tifact assemblages. Both ecologically and culturally, the early Holocene is
a period of adjustmentwhenhuman settlement and subsistence systems
begin to intensify as ecosystems stabilize. A broad coastal plain around
Santa Rosa and San Miguel islands would still have presented a distinct
terrestrial environment from the modern, but pollen evidence, while
limited, suggests that plant communities were similar to those of the
present. Between 7.0 and 6.0 ka, sea level rise probably ceased to have
a significant influence over either ecology or site visibility on the NCI.

Paleogeographic reconstructions serve as a reminder that we are
missing a large portion of the archeological record of human settlement
of the NCI and other coastal regions during the late Pleistocene and
early Holocene. Most sites known before 10,000 cal yr BP on the NCI

were interior sites located hundreds or thousands of meters from the
shoreline. However, settlement patterns throughout the Holocene
were more heavily focused on coastal areas and models indicate that
this should have been true during the late Pleistocene as well
(Reeder-Myers, 2014b). The apparent sharp increase in site frequency
after 9000 cal yr BP (Fig. 5) is, to some extent, the result of better site
visibility.

Future underwater research on the previously exposed coastal plain
could focus on the large streams on the northern side of Santa Rosa Is-
land throughout the late Pleistocene, the unusual bay andwide intertid-
al areas on the northern side of Santa Cruz Island between about 16.0
and 14.0 ka, and the large bay that likely formed on the southern side
of the former isthmus between Santa Cruz and Santa Rosa islands be-
tween about 16.0 and 10.0 ka. However, this study demonstrates that
the application of a single RSL curve to the entireNCI could producemis-
leading results for underwater mapping and survey projects aiming to
discover early sites (Fig. 6). Underwater survey is the onlyway to obtain
definitive evidence for either paleogeographic or archeological change
on the late Pleistocene and early HoloceneNCI coastline, but these activ-
ities must be guided by the most accurate possible models.

Conclusions

This model of paleogeography and paleoecology builds on previous
efforts to produce reliable estimates of shoreline change on the NCI by
incorporating a more complex GIA-corrected model of sea level rise,
and complements other recent research on the west coast of North
America (Shugar et al., 2005; Clark et al., 2014; McLaren et al., 2014).
The results of the present study allow for a more comprehensive exam-
ination of the ecological and archeological implications of those chang-
es. The first people to colonize the NCI likely faced relatively rapid
changes in available rocky intertidal, kelp forest, and terrestrial ecosys-
tems because of rising sea level and a variable climate. The rate of those
changes peaked just before the Younger Dryas and again during the
early Holocene, but began to decrease significantly after about 6.0 ka
(Fig. 3). Collectively, these data demonstrate that change appears to
be a constant factor in NCI ecosystems, and the adaptive resilience
that island ecosystems and organisms have evolved will be a key part
of their survival through the Anthropocene (see Rick et al., 2014).

On the NCI, differences of only a few meters in sea level can make
large differences in shoreline locations under certain conditions, particu-
larly along the more gently sloping insular shelf on the northern side of
the islands (Fig. 6). In areas with more gradually sloping continental
shelves (e.g., North America's Atlantic and Gulf coasts), these differences
could translate into kilometers of error in shoreline reconstructions. Even
in areas located far from the LGM ice sheets, GIA corrections are essential
to more accurate estimates of shoreline locations and interpretations of
paleogeography, ecological change, and archeological patterns.
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