10 research outputs found
Noise-induced scenario for inverted phase diagrams
We introduce a class of exactly solvable models exhibiting an ordering noise-induced phase transition in which order arises as a result of a balance between the relaxing deterministic dynamics and the randomizing character of the fluctuations. A finite-size scaling analysis of the phase transition reveals that it belongs to the universality class of the equilibrium Ising model. All these results are analyzed in the light of the nonequilibrium probability distribution of the system, which can be obtained analytically. Our results could constitute a possible scenario of inverted phase diagrams in the so-called lower critical solution temperature transitions
4to. Congreso Internacional de Ciencia, Tecnología e Innovación para la Sociedad. Memoria académica
Este volumen acoge la memoria académica de la Cuarta edición del Congreso Internacional de Ciencia, Tecnología e Innovación para la Sociedad, CITIS 2017, desarrollado entre el 29 de noviembre y el 1 de diciembre de 2017 y organizado por la Universidad Politécnica Salesiana (UPS) en su sede de Guayaquil.
El Congreso ofreció un espacio para la presentación, difusión e intercambio de importantes investigaciones nacionales e internacionales ante la comunidad universitaria que se dio cita en el encuentro. El uso de herramientas tecnológicas para la gestión de los trabajos de investigación como la plataforma Open Conference Systems y la web de presentación del Congreso http://citis.blog.ups.edu.ec/, hicieron de CITIS 2017 un verdadero referente entre los congresos que se desarrollaron en el país.
La preocupación de nuestra Universidad, de presentar espacios que ayuden a generar nuevos y mejores cambios en la dimensión humana y social de nuestro entorno, hace que se persiga en cada edición del evento la presentación de trabajos con calidad creciente en cuanto a su producción científica.
Quienes estuvimos al frente de la organización, dejamos plasmado en estas memorias académicas el intenso y prolífico trabajo de los días de realización del Congreso Internacional de Ciencia, Tecnología e Innovación para la Sociedad al alcance de todos y todas
Effects of domain morphology in phase-separation dynamics at low temperature
We present numerical results of the deterministic Ginzburg-Landau equation with a concentration-dependent diffusion coefficient, for different values of the volume fraction phi of the minority component. The morphology of the domains affects the dynamics of phase separation. The effective growth exponents, but not the scaled functions, are found to be temperature dependent
Noise-induced scenario for inverted phase diagrams
We introduce a class of exactly solvable models exhibiting an ordering noise-induced phase transition in which order arises as a result of a balance between the relaxing deterministic dynamics and the randomizing character of the fluctuations. A finite-size scaling analysis of the phase transition reveals that it belongs to the universality class of the equilibrium Ising model. All these results are analyzed in the light of the nonequilibrium probability distribution of the system, which can be obtained analytically. Our results could constitute a possible scenario of inverted phase diagrams in the so-called lower critical solution temperature transitions
Noise-induced phase separation: Mean-field results
We present a study of a phase-separation process induced by the presence of spatially correlated multiplicative noise. We develop a mean-field approach suitable for conserved-order-parameter systems and use it to obtain the phase diagram of the model. Mean-field results are compared with numerical simulations of the complete model in two dimensions. Additionally, a comparison between the noise-driven dynamics of conserved and nonconserved systems is made at the level of the mean-field approximation
Domain growth in binary mixtures at low temperatures
We have studied domain growth during spinodal decomposition at low temperatures. We have performed a numerical integration of the deterministic time-dependent Ginzburg-Landau equation with a variable, concentration-dependent diffusion coefficient. The form of the pair-correlation function and the structure function are independent of temperature but the dynamics is slower at low temperature. A crossover between interfacial diffusion and bulk diffusion mechanisms is observed in the behavior of the characteristic domain size. This effect is explained theoretically in terms of an equation of motion for the interface
Effects of domain morphology in phase-separation dynamics at low temperature
We present numerical results of the deterministic Ginzburg-Landau equation with a concentration-dependent diffusion coefficient, for different values of the volume fraction phi of the minority component. The morphology of the domains affects the dynamics of phase separation. The effective growth exponents, but not the scaled functions, are found to be temperature dependent
Domain growth in binary mixtures at low temperatures
We have studied domain growth during spinodal decomposition at low temperatures. We have performed a numerical integration of the deterministic time-dependent Ginzburg-Landau equation with a variable, concentration-dependent diffusion coefficient. The form of the pair-correlation function and the structure function are independent of temperature but the dynamics is slower at low temperature. A crossover between interfacial diffusion and bulk diffusion mechanisms is observed in the behavior of the characteristic domain size. This effect is explained theoretically in terms of an equation of motion for the interfacePeer Reviewe
Estudios multidisciplinarios en Ciencias de la Salud
Es una distinción, como miembro de la Comisión del Programa del Doctorado en Ciencias de la Salud de la Universidad Autónoma del Estado de México, presentar el libro titulado Estudios multidisciplinarios en Ciencias de la Salud, en el que distinguidos y reconocidos investigadores, entusiastas y comprometidos alumnos del programa nos dan a conocer los resultados de sus proyectos de investigación, trabajos que forman parte de los requisitos para acceder al grado de doctor.
Entre las razones que invitan a la lectura del libro destaca su contenido conformado con la participación de autores en cuatro áreas en el campo de la salud: Odontología, Ciencias Médicas y Nutrición, Ciencias de la Conducta, y Enfermería y Obstetricia, quienes contribuyen a incrementar el acervo del conocimiento en cada área, en favor de la ciencia, la tecnología, y la salud física y mental de la población.Universidad Autónoma del Estado de México