26 research outputs found

    Sensor-Based Reactive Execution of Symbolic Rearrangement Plans by a Legged Mobile Manipulator

    Get PDF
    We demonstrate the physical rearrangement of wheeled stools in a moderately cluttered indoor environment by a quadrupedal robot that autonomously achieves a user\u27s desired configuration. The robot\u27s behaviors are planned and executed by a three layer hierarchical architecture consisting of: an offline symbolic task and motion planner; a reactive layer that tracks the reference output of the deliberative layer and avoids unanticipated obstacles sensed online; and a gait layer that realizes the abstract unicycle commands from the reactive module through appropriately coordinated joint level torque feedback loops. This work also extends prior formal results about the reactive layer to a broad class of nonconvex obstacles. Our design is verified both by formal proofs as well as empirical demonstration of various assembly tasks. For more information: Kod*la

    Performance status: A key factor in predicting mortality in the first wave of COVID-19 in South-East Scotland

    Get PDF
    BACKGROUND: COVID-19 mortality risk factors have been established in large cohort studies; long-term mortality outcomes are less documented. METHODS: We performed multivariable logistic regression to identify factors associated with in-patient mortality and intensive care unit (ICU) admission in symptomatic COVID-19 patients admitted to hospitals in South-East Scotland from 1st March to 30th June 2020. One-year mortality was reviewed. RESULTS: Of 726 patients (median age 72; interquartile range: 58–83 years, 55% male), 104 (14%) required ICU admission and 199 (27%) died in hospital. A further 64 died between discharge and 30th June 2021 (36% overall 1-year mortality). Stepwise logistic regression identified age >79 (odds ratio (OR), 4.77 (95% confidence interval (CI), 1.96–12.75)), male sex (OR, 1.83 (95% CI, 1.21–2.80)) and higher European Cooperative Oncology Group/World Health Organization performance status as associated with higher mortality risk. DISCUSSION: Poor functional baseline was the predominant independent risk factor for mortality in COVID-19. More than one-third of individuals had died by 1 year following admission

    Establishment and characterization of turtle liver organoids provides a potential model to decode their unique adaptations

    Get PDF
    Painted turtles are remarkable for their freeze tolerance and supercooling ability along with their associated resilience to hypoxia/anoxia and oxidative stress, rendering them an ideal biomedical model for hypoxia-induced injuries (including strokes), tissue cooling during surgeries, and organ cryopreservation. Yet, such research is hindered by their seasonal reproduction and slow maturation. Here we developed and characterized adult stem cell-derived turtle liver organoids (3D self-assembled in vitro structures) from painted, snapping, and spiny softshell turtles spanning ~175My of evolution, with a subset cryopreserved. This development is, to the best of our knowledge, a first for this vertebrate Order, and complements the only other non-avian reptile organoids from snake venom glands. Preliminary characterization, including morphological, transcriptomic, and proteomic analyses, revealed organoids enriched in cholangiocytes. Deriving organoids from distant turtles and life stages demonstrates that our techniques are broadly applicable to chelonians, permitting the development of functional genomic tools currently lacking in herpetological research. Such platform could potentially support studies including genome-to-phenome mapping, gene function, genome architecture, and adaptive responses to climate change, with implications for ecological, evolutionary, and biomedical research

    Impact of COVID-19 on cardiovascular testing in the United States versus the rest of the world

    Get PDF
    Objectives: This study sought to quantify and compare the decline in volumes of cardiovascular procedures between the United States and non-US institutions during the early phase of the coronavirus disease-2019 (COVID-19) pandemic. Background: The COVID-19 pandemic has disrupted the care of many non-COVID-19 illnesses. Reductions in diagnostic cardiovascular testing around the world have led to concerns over the implications of reduced testing for cardiovascular disease (CVD) morbidity and mortality. Methods: Data were submitted to the INCAPS-COVID (International Atomic Energy Agency Non-Invasive Cardiology Protocols Study of COVID-19), a multinational registry comprising 909 institutions in 108 countries (including 155 facilities in 40 U.S. states), assessing the impact of the COVID-19 pandemic on volumes of diagnostic cardiovascular procedures. Data were obtained for April 2020 and compared with volumes of baseline procedures from March 2019. We compared laboratory characteristics, practices, and procedure volumes between U.S. and non-U.S. facilities and between U.S. geographic regions and identified factors associated with volume reduction in the United States. Results: Reductions in the volumes of procedures in the United States were similar to those in non-U.S. facilities (68% vs. 63%, respectively; p = 0.237), although U.S. facilities reported greater reductions in invasive coronary angiography (69% vs. 53%, respectively; p < 0.001). Significantly more U.S. facilities reported increased use of telehealth and patient screening measures than non-U.S. facilities, such as temperature checks, symptom screenings, and COVID-19 testing. Reductions in volumes of procedures differed between U.S. regions, with larger declines observed in the Northeast (76%) and Midwest (74%) than in the South (62%) and West (44%). Prevalence of COVID-19, staff redeployments, outpatient centers, and urban centers were associated with greater reductions in volume in U.S. facilities in a multivariable analysis. Conclusions: We observed marked reductions in U.S. cardiovascular testing in the early phase of the pandemic and significant variability between U.S. regions. The association between reductions of volumes and COVID-19 prevalence in the United States highlighted the need for proactive efforts to maintain access to cardiovascular testing in areas most affected by outbreaks of COVID-19 infection

    Dimethyl fumarate in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial

    Get PDF
    Dimethyl fumarate (DMF) inhibits inflammasome-mediated inflammation and has been proposed as a treatment for patients hospitalised with COVID-19. This randomised, controlled, open-label platform trial (Randomised Evaluation of COVID-19 Therapy [RECOVERY]), is assessing multiple treatments in patients hospitalised for COVID-19 (NCT04381936, ISRCTN50189673). In this assessment of DMF performed at 27 UK hospitals, adults were randomly allocated (1:1) to either usual standard of care alone or usual standard of care plus DMF. The primary outcome was clinical status on day 5 measured on a seven-point ordinal scale. Secondary outcomes were time to sustained improvement in clinical status, time to discharge, day 5 peripheral blood oxygenation, day 5 C-reactive protein, and improvement in day 10 clinical status. Between 2 March 2021 and 18 November 2021, 713 patients were enroled in the DMF evaluation, of whom 356 were randomly allocated to receive usual care plus DMF, and 357 to usual care alone. 95% of patients received corticosteroids as part of routine care. There was no evidence of a beneficial effect of DMF on clinical status at day 5 (common odds ratio of unfavourable outcome 1.12; 95% CI 0.86-1.47; p = 0.40). There was no significant effect of DMF on any secondary outcome

    Dimethyl fumarate in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial

    Get PDF
    Dimethyl fumarate (DMF) inhibits inflammasome-mediated inflammation and has been proposed as a treatment for patients hospitalised with COVID-19. This randomised, controlled, open-label platform trial (Randomised Evaluation of COVID-19 Therapy [RECOVERY]), is assessing multiple treatments in patients hospitalised for COVID-19 (NCT04381936, ISRCTN50189673). In this assessment of DMF performed at 27 UK hospitals, adults were randomly allocated (1:1) to either usual standard of care alone or usual standard of care plus DMF. The primary outcome was clinical status on day 5 measured on a seven-point ordinal scale. Secondary outcomes were time to sustained improvement in clinical status, time to discharge, day 5 peripheral blood oxygenation, day 5 C-reactive protein, and improvement in day 10 clinical status. Between 2 March 2021 and 18 November 2021, 713 patients were enroled in the DMF evaluation, of whom 356 were randomly allocated to receive usual care plus DMF, and 357 to usual care alone. 95% of patients received corticosteroids as part of routine care. There was no evidence of a beneficial effect of DMF on clinical status at day 5 (common odds ratio of unfavourable outcome 1.12; 95% CI 0.86-1.47; p = 0.40). There was no significant effect of DMF on any secondary outcome

    Cadmium Ecotoxic Effects on Embryonic Dmrt1 and Aromatase Expression in Chrysemys picta Turtles May Implicate Changes in DNA Methylation

    No full text
    Temperature-dependent sex determination (TSD) decides the sex fate of an individual based on incubation temperature. However, other environmental factors, such as pollutants, could derail TSD sexual development. Cadmium is one such contaminant of soils and water bodies known to affect DNA methylation, an epigenetic DNA modification with a key role in sexual development of TSD vertebrate embryos. Yet, whether cadmium alters DNA methylation of genes underlying gonadal formation in turtles remains unknown. Here, we investigated the effects of cadmium on the expression of two gene regulators of TSD in the painted turtle, Chrysemys picta, incubated at male-producing and female-producing temperatures using qPCR. Results revealed that cadmium alters transcription of Dmrt1 and aromatase, overriding the normal thermal effects during embryogenesis, which could potentially disrupt the sexual development of TSD turtles. Results from a preliminary DNA methylation-sensitive PCR assay implicate changes in DNA methylation of Dmrt1 as a potential cause that requires further testing (aromatase methylation assays were precluded)

    Spread of E. coli O157 infection among Scottish cattle farms: Stochastic models and model selection

    Get PDF
    Identifying risk factors for the presence of Escherichia coli O157 infection on cattle farms is important for understanding the epidemiology of this zoonotic infection in its main reservoir and for informing the design of interventions to reduce the public health risk. Here, we use data from a large-scale field study carried out in Scotland to fit both “SIS”-type dynamical models and statistical risk factor models. By comparing the fit (assessed using maximum likelihood) of different dynamical models we are able to identify the most parsimonious model (using the AIC statistic) and compare it with the model suggested by risk factor analysis. Both approaches identify 2 key risk factors: the movement of cattle onto the farm and the number of cattle on the farm. There was no evidence for a role of other livestock species or seasonality, or of significant risk of local spread. However, the most parsimonious dynamical model does predict that farms can infect other farms through routes other than cattle movement, and that there is a nonlinear relationship between the force of infection and the number of infected farms. An important prediction from the most parsimonious model is that although only ∼ 20% farms may harbour E. coli O157 infection at any given time ∼ 80% may harbour infection at some point during the course of a year

    Comparison of diglycolic acid exposure to human proximal tubule cells in vitro and rat kidneys in vivo

    No full text
    Diglycolic acid (DGA) is present in trace amounts in our food supply and is classified as an indirect food additive linked with the primary GRAS food additive carboxymethyl cellulose (CMC). Carboxymethyl starches are used as a filler/binder excipient in dietary supplement tablets and a thickening ingredient in many other processed foods. We sought to utilize the human proximal tubule HK-2 cell line as an in vitro cellular model system to evaluate its acute nephrotoxicity of DGA. We found that DGA was indeed toxic to HK-2 cells in all in vitro assays in our study, including a highly sensitive Luminex assay that measures levels of an in vitro biomarker of kidney-specific toxicity, Kidney Injury Molecule 1 (KIM-1). Interestingly, in vitro KIM-1 levels also correlated with in vivo KIM-1 levels in urine collected from rats treated with DGA by daily oral gavage. The use of in vitro and in vivo models towards understanding the effectiveness of an established in vitro system to predict in vivo outcomes would be particularly useful in rapidly screening compounds that are suspected to be unsafe to consumers. The merit of the HK-2 cell model in predicting human toxicity and accelerating the process of food toxicant screening would be especially important for regulatory purposes. Overall, our study not only revealed the value of HK-2 in vitro cell model for nephrotoxicity evaluation, but also uncovered some of the mechanistic aspects of the human proximal tubule injury that DGA may cause. Keywords: Kidney proximal tubule, HK-2 cells, Diglycolic acid, Nephrotoxicit

    Characterization of the First Turtle Organoids: A Model for Investigating Unique Adaptations with Biomedical Potential

    No full text
    Painted turtles are remarkable for their well-developed freeze tolerance and associated resilience to hypoxia/anoxia, oxidative stress, and ability to supercool. They are, therefore, an ideal model for biomedical research on hypoxia-induced injuries (including strokes), tissue cooling during extensive surgeries, and organ cryopreservation. Yet, the seasonal reproduction and slow maturation of turtles hinder basic and applied biomedical research. To overcome these limitations, we developed the first adult stem cell-derived turtle hepatic organoids, which provide 3D self-assembled structures that mimic their original tissue and allow for in vitro testing and experimentation without constantly harvesting donor tissue and screening offspring. Our pioneering work with turtles represents the first for this vertebrate Order and complements the only other organoid lines from non-avian reptiles, derived from snake venom glands. Here we report the isolation and characterization of hepatic organoids derived from painted, snapping, and spiny softshell turtles spanning ∼175 million years of evolution, with a subset being preserved in a biobank. Morphological and transcriptomics revealed organoid cells resembling cholangiocytes, which was then compared to the tissue of origin. Deriving turtle organoids from multiple species and life stages demonstrates that our techniques are broadly applicable to chelonians, permitting the development of functional genomic tools currently missing in most herpetological research. When combined with genetic editing, this platform will further support studies of genome-to-phenome mapping, gene function, genome architecture, and adaptive responses to climate change, among others. We discuss the unique abilities of turtles, including their overwintering potential, which has implications for ecological, evolutionary, and biomedical research.This is a pre-print of the article Zdyrski, Christopher, Vojtech Gabriel, Thea B. Gessler, Abigail Ralston, Itzel Sifuentes-Romero, Debosmita Kundu, Sydney Honold et al. "Characterization of the First Turtle Organoids: A Model for Investigating Unique Adaptations with Biomedical Potential." bioRxiv (2023): 2023-02. DOI: 10.1101/2023.02.20.527070. Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0). Copyright 2023. The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. Posted with permission
    corecore