926 research outputs found

    The Evolution of the Type Ia Supernova Luminosity Function

    Get PDF
    Type Ia supernovae (SNe Ia) exhibit a wide diversity of peak luminosities and light curve shapes: the faintest SNe Ia are 10 times less luminous and evolve more rapidly than the brightest SNe Ia. Their differing characteristics also extend to their stellar age distributions, with fainter SNe Ia preferentially occurring in old stellar populations and vice versa. In this Letter, we quantify this SN Ia luminosity - stellar age connection using data from the Lick Observatory Supernova Search (LOSS). Our binary population synthesis calculations agree qualitatively with the observed trend in the >1 Gyr-old populations probed by LOSS if the majority of SNe Ia arise from prompt detonations of sub-Chandrasekhar mass white dwarfs (WDs) in double WD systems. Under appropriate assumptions, we show that double WD systems with less massive primaries, which yield fainter SNe Ia, interact and explode at older ages than those with more massive primaries. We find that prompt detonations in double WD systems are capable of reproducing the observed evolution of the SN Ia luminosity function, a constraint that any SN Ia progenitor scenario must confront.Comment: Accepted for publication in ApJL. Minor changes to previous version for clarity. Data used to construct the observational CDFs in Figure 4 are available in an ancillary fil

    PopCORN: Hunting down the differences between binary population synthesis codes

    Get PDF
    Binary population synthesis (BPS) modelling is a very effective tool to study the evolution and properties of close binary systems. The uncertainty in the parameters of the model and their effect on a population can be tested in a statistical way, which then leads to a deeper understanding of the underlying physical processes involved. To understand the predictive power of BPS codes, we study the similarities and differences in the predicted populations of four different BPS codes for low- and intermediate-mass binaries. We investigate whether the differences are caused by different assumptions made in the BPS codes or by numerical effects. To simplify the complex problem of comparing BPS codes, we equalise the inherent assumptions as much as possible. We find that the simulated populations are similar between the codes. Regarding the population of binaries with one WD, there is very good agreement between the physical characteristics, the evolutionary channels that lead to the birth of these systems, and their birthrates. Regarding the double WD population, there is a good agreement on which evolutionary channels exist to create double WDs and a rough agreement on the characteristics of the double WD population. Regarding which progenitor systems lead to a single and double WD system and which systems do not, the four codes agree well. Most importantly, we find that for these two populations, the differences in the predictions from the four codes are not due to numerical differences, but because of different inherent assumptions. We identify critical assumptions for BPS studies that need to be studied in more detail.Comment: 13 pages, +21 pages appendix, 35 figures, accepted for publishing in A&A, Minor change to match published version, most important the added link to the website http://www.astro.ru.nl/~silviato/popcorn for more detailed figures and informatio

    Detecting hierarchical stellar systems with LISA

    Full text link
    A significant fraction of stars are members of gravitationally bound hierarchies containing three or more components. Almost all low mass stars in binaries with periods shorter three days are part of a hierarchical system. We therefore anticipate that a large fraction of compact galactic binaries detected by the Laser Interferometer Space Antenna (LISA) will be members of hierarchical triple or quadruple system. The acceleration imparted by the hierarchical companions can be detected in the gravitational wave signal for outer periods as large as 100 years. For systems with periods that are shorter than, or comparable to, the mission lifetime, it will be possible to measure the period and eccentricity of the outer orbit. LISA observations of hierarchical stellar systems will provide insight into stellar evolution, including the role that Kozai-Lidov oscillations play in driving systems towards merger.Comment: 15 pages, 14 figure

    If larvae were smart: a simple model for optimal settlement behavior of competent larvae

    Get PDF
    Much research has been done on larval settlement cues. Rather than having simple fixed responses to constant environmental stimuli, it seems likely that settlement decisions made by individual larvae should vary depending on the individual and the conditions under which it encounters that cue. Here, we present a simple stochastic dynamic programming model that explores the conditions under which larvae may maximize their lifetime fitness by accepting lower quality habitat rather than continuing to search for superior habitat. Our model predicts that there is a relatively narrow range of parameter values over which larval selectivity among habitat types changes dramatically from 1 (larvae accept only optimal substrata) to 0 (indiscriminant settlement). This narrow range coincides with our best estimate of parameter values gleaned from empirical studies, and the model output matches data for the polychaete worm Hydroides dianthus remarkably well. The relative availability of habitats and the total time available to search for high quality habitat (i.e. the ability to delay metamorphosis) had the greatest effects on larval selectivity. In contrast, intuitive factors, including larval energetics and mortality, showed little effect on larval habitat preference, but could still alter the proportion of larvae settling in different habitats by reducing search time. Our model predicts that a given larva may behave differently depending on where it falls in the optimality decision matrix at the instant in which it locates substrata. This model provides a conceptual framework in which to conduct future studies involving variability in settlement decisions among individual larvae, and in which to consider the selective forces driving the evolution of specific larval settlement cues. Our results suggest that a combination of the maximum search period and the relative frequency and quality of optimal habitat likely exert the greatest influence on the evolution of larval selectivity in the field

    Gigahertz repetition rate thermionic electron gun concept

    Get PDF
    We present a novel concept for the generation of gigahertz repetition rate high brightness electron bunches. A custom design 100 kV thermionic gun provides a continuous electron beam, with the current determined by the filament size and temperature. A 1 GHz rectangular RF cavity deflects the beam across a knife-edge, creating a pulsed beam. Adding a higher harmonic mode to this cavity results in a flattened magnetic field profile which increases the duty cycle to 30%. Finally, a compression cavity induces a negative longitudinal velocity-time chirp in a bunch, initiating ballistic compression. Adding a higher harmonic mode to this cavity increases the linearity of this chirp and thus decreases the final bunch length. Charged particle simulations show that with a 0.15 mm radius LaB6 filament held at 1760 K, this method can create 279 fs, 3.0 pC electron bunches with a radial rms core emittance of 0.089 mm mrad at a repetition rate of 1 GHz.Comment: 12 pages, 12 figure

    Progenitors of Supernovae Type Ia

    Full text link
    Despite the significance of Type Ia supernovae (SNeIa) in many fields in astrophysics, SNeIa lack a theoretical explanation. The standard scenarios involve thermonuclear explosions of carbon/oxygen white dwarfs approaching the Chandrasekhar mass; either by accretion from a companion or by a merger of two white dwarfs. We investigate the contribution from both channels to the SNIa rate with the binary population synthesis (BPS) code SeBa in order to constrain binary processes such as the mass retention efficiency of WD accretion and common envelope evolution. We determine the theoretical rates and delay time distribution of SNIa progenitors and in particular study how assumptions affect the predicted rates.Comment: 6 pages, 6 figures, appeared in proceedings for "The 18th European White Dwarf Workshop

    Prospects for detection of detached double white dwarf binaries with Gaia, LSST and LISA

    Get PDF
    Double white dwarf (DWD) binaries are expected to be very common in the Milky Way, but their intrinsic faintness challenges the detection of these systems. Currently, only a few tens of detached DWDs are know. Such systems offer the best chance of extracting the physical properties that would allow us to address a wealth of outstanding questions ranging from the nature of white dwarfs, over stellar and binary evolution to mapping the Galaxy. In this paper we explore the prospects for detections of ultra-compact (with binary separations of a few solar radii or less) detached DWDs in: 1) optical radiation with Gaia and the LSST and 2) gravitational wave radiation with LISA. We show that Gaia, LSST and LISA have the potential to detect respectively around a few hundreds, a thousand, and 25 thousand DWD systems. Moreover, Gaia and LSST data will extend by respectively a factor of two and seven the guaranteed sample of binaries detected in electromagnetic and gravitational wave radiation, opening the era of multi-messenger astronomy for these sources.Comment: submitted to MNRA
    corecore