638 research outputs found

    Travel Industry Association of America (TIA)

    Get PDF
    This article explores the role of TIA in the leisure industry

    Teaching case: Analysis of an electronic voting system

    Get PDF
    This teaching case discusses the analysis of an electronic voting system. The development of the case was motivated by research into information security and management, but as it includes procedural aspects, organizational structure and personnel, it is a suitable basis for all aspects of systems analysis, planning and design tasks. The material is based on real life analysis of currently used electronic voting systems, which have been generalized so as to highlight the wider issues and to not identify with any particular implementation of electronic voting. Suggested project deliverables are described in the teaching case, and these are complemented by the associated teaching notes which detail sample solutions and discussion points for class

    Adaptalight: An inexpensive PAR sensor system for daylight harvesting in a Micro Indoor Smart Hydroponic System

    Get PDF
    Environmental changes and the reduction in arable land have led to food security concerns around the world, particularly in urban settings. Hydroponic soilless growing methods deliver plant nutrients using water, conserving resources and can be constructed nearly anywhere. Hydroponic systems have several complex attributes that need to be managed, and this can be daunting for the layperson. Micro Indoor Smart Hydroponics (MISH) leverage Internet of Things (IoT) technology to manage the complexities of hydroponic techniques, for growing food at home for everyday citizens. Two prohibitive costs in the advancement of MISH systems are power consumption and equipment expense. Reducing cost through harvesting ambient light can potentially reduce power consumption but must be done accurately to sustain sufficient plant yields. Photosynthetic Active Radiation (PAR) meters are commercially used to measure only the light spectrum that plants use, but are expensive. This study presents Adaptalight, a MISH system that harvests ambient light using an inexpensive AS7265x IoT sensor to measure PAR. The system is built on commonly found IoT technology and a well-established architecture for MISH systems. Adpatalight was deployed in a real-world application in the living space of an apartment and experiments were carried out accordingly. A two-phase experiment was conducted over three months, each phase lasting 21 days. Phase one measured the IoT sensor’s capability to accurately measure PAR. Phase two measured the ability of the system to harvest ambient PAR light and produce sufficient yields, using the calibrated IoT sensor from phase one. The results showed that the Adaptalight system was successful in saving a significant amount of power, harvesting ambient PAR light and producing yields with no significant differences from the control. The amount of power savings would be potentially greater in a location with more ambient light. Additionally, the findings show that, when calibrated, the AS7265x sensor is well suited to accurately measure PAR light in MISH systems

    Enhancing the ethical use of learning analytics in Australian higher education

    Get PDF
    Ensuring the ethical use of data about students is an important consideration in the use of learning analytics in Australian higher education. In early 2019 a discussion paper was published by a group of learning analytics specialists in the sector to help promote the conversation around the key ethical issues institutions need to address in order to ensure the ethical use of learning analytics. This panel session will explore these ethical issues in more detail and update the conversation with new perspectives and provocations. The panel will include authors of the discussion paper and structured so the audience will have an active role in considering the key issues and advancing the ongoing conversations about these important issues

    Balloon-borne radiometer measurement of Northern Hemisphere mid-latitude stratospheric HNO3 profiles spanning 12 years

    Get PDF
    Low-resolution atmospheric thermal emission spectra collected by balloon-borne radiometers over the time span of 1990–2002 are used to retrieve vertical profiles of HNO3, CFC-11 and CFC-12 volume mixing ratios between approximately 10 and 35 km altitude. All of the data analyzed have been collected from launches from a Northern Hemisphere mid-latitude site, during late summer, when stratospheric dynamic variability is at a minimum. The retrieval technique incorporates detailed forward modeling of the instrument and the radiative properties of the atmosphere, and obtains a best fit between modeled and measured spectra through a combination of onion-peeling and global optimization steps. The retrieved HNO3 profiles are consistent over the 12-year period, and are consistent with recent measurements by the Atmospheric Chemistry Experiment-Fourier transform spectrometer satellite instrument. This suggests that, to within the errors of the 1990 measurements, there has been no significant change in the HNO3 summer mid-latitude profile

    Addressing legal and policy barriers to male circumcision for adolescent boys in South Africa

    Get PDF
    With millions of adolescents becoming infected with HIV globally, it is essential that barriers to much-needed interventions are reduced for at-risk adolescents. In this article we review the legal and policy framework in South Africa for adolescent access to male circumcision. We are of the view that the framework does confer protection for adolescent boys while enabling access to male circumcision; however, we identify ambiguities and tensions that exist between the Children’s Act, regulations and national guidelines. We recommend reform to further enable access by this vulnerable group to this prevention modality

    Stratosphere troposphere coupling: the influence of volcanic eruptions

    Get PDF
    Stratospheric sulfate aerosols produced by major volcanic eruptions modify the radiative and dynamical properties of the troposphere and stratosphere through their reflection of solar radiation and absorption of infrared radiation. At the Earth's surface, the primary consequence of a large eruption is cooling, however, it has long been known that major tropical eruptions tend to be followed by warmer than usual winters over the Northern Hemisphere (NH) continents. This volcanic "winter-warming" effect in the NH is understood to be the result of changes in atmospheric circulation patterns resulting from heating in the stratosphere, and is often described as positive anomalies of the Northern Annular Mode (NAM) that propagate downward from the stratosphere to the troposphere. In the southern hemisphere, climate models tend to also predict a positive Southern Annular Mode (SAM) response to volcanic eruptions, but this is generally inconsistent with post-eruption observations during the 20th century. We review present understanding of the influence of volcanic eruptions on the large scale modes of atmospheric variability in both the Northern and Southern Hemispheres. Using models of varying complexity, including an aerosol-climate model, an Earth system model, and CMIP5 simulations, we assess the ability of climate models to reproduce the observed post-eruption climatic and dynamical anomalies. We will also address the parametrization of volcanic eruptions in simulations of the past climate, and identify possibilities for improvemen

    Introducing the concept of Potential Aerosol Mass (PAM)

    Get PDF
    International audiencePotential Aerosol Mass (PAM) can be defined as the maximum aerosol mass that the oxidation of precursor gases produces. In the measurement, all precursor gases are rapidly oxidized with extreme amounts of oxidants to low volatility compounds, resulting in the aerosol formation. Oxidation occurs in a small, simple, flow-through chamber that has a short residence time and is irradiated with ultraviolet light. The amount of the oxidants ozone (O3), hydroxyl (OH), and hydroperoxyl (HO2) were measured directly and can be controlled by varying the UV light and the relative humidity. Maximum values were 40 ppmv for O3 500 pptv for OH, and 4 ppbv for HO2. The oxidant amounts are 100 to 1000 times troposphere values, but the ratios OH/O3 and HO2/OH are similar to troposphere values. The aerosol production mechanism and the aerosol mass yield were studied for several controlling variables, such as temperature, relative humidity, oxidant concentration, presence of nitrogen oxides (NOx), precursor gas composition and amount, and the presence of acidic seed aerosol. The measured secondary organic aerosol (SOA) yield of several natural and anthropogenic volatile organic compounds and a mixture of hydrocarbons in the PAM chamber were similar to those obtained in large, batch-style environmental chambers. This PAM method is being developed for measuring potential aerosol mass in the atmosphere, but is also useful for examining SOA processes in the laboratory and in environmental chambers

    Measurements of quantum yields of bromine atoms in the photolysis of bromoform from 266 to 324 nm

    Get PDF
    The quantum yield for the formation of bromine atoms in the photolysis of bromoform, CHBr_3, has been measured between 266 and 324 nm. For 303 to 306 nm the quantum yields are unity within the experimental uncertainty of the measurements. At longer wavelengths, where the bromoform cross sections decrease rapidly, an apparent trend to slightly lower quantum yields is probably the result of systematic and random errors or incorrect CHBr_3 absorption cross sections. Support for a unit quantum yield for all wavelengths longer than 300 nm comes from the recent theoretical calculations of Peterson and Francisco. At 266 nm the bromine atom quantum yield is 0.76 (±0.03), indicating that at least one additional dissociation channel becomes important at shorter wavelengths. For modeling of the troposphere, it is recommended that a quantum yield of unity be used for wavelengths of 300 nm and longer

    The unidentified eruption of 1809: A climatic cold case

    Get PDF
    The "1809 eruption"is one of the most recent unidentified volcanic eruptions with a global climate impact. Even though the eruption ranks as the third largest since 1500 with a sulfur emission strength estimated to be 2 times that of the 1991 eruption of Pinatubo, not much is known of it from historic sources. Based on a compilation of instrumental and reconstructed temperature time series, we show here that tropical temperatures show a significant drop in response to the ~1809 eruption that is similar to that produced by the Mt. Tambora eruption in 1815, while the response of Northern Hemisphere (NH) boreal summer temperature is spatially heterogeneous. We test the sensitivity of the climate response simulated by the MPI Earth system model to a range of volcanic forcing estimates constructed using estimated volcanic stratospheric sulfur injections (VSSIs) and uncertainties from ice-core records. Three of the forcing reconstructions represent a tropical eruption with an approximately symmetric hemispheric aerosol spread but different forcing magnitudes, while a fourth reflects a hemispherically asymmetric scenario without volcanic forcing in the NH extratropics. Observed and reconstructed post-volcanic surface NH summer temperature anomalies lie within the range of all the scenario simulations. Therefore, assuming the model climate sensitivity is correct, the VSSI estimate is accurate within the uncertainty bounds. Comparison of observed and simulated tropical temperature anomalies suggests that the most likely VSSI for the 1809 eruption would be somewhere between 12 and 19ĝ€¯Tg of sulfur. Model results show that NH large-scale climate modes are sensitive to both volcanic forcing strength and its spatial structure. While spatial correlations between the N-TREND NH temperature reconstruction and the model simulations are weak in terms of the ensemble-mean model results, individual model simulations show good correlation over North America and Europe, suggesting the spatial heterogeneity of the 1810 cooling could be due to internal climate variability
    • …
    corecore