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Abstract: Environmental changes and the reduction in arable land have led to food security concerns
around the world, particularly in urban settings. Hydroponic soilless growing methods deliver plant
nutrients using water, conserving resources and can be constructed nearly anywhere. Hydroponic
systems have several complex attributes that need to be managed, and this can be daunting for the
layperson. Micro Indoor Smart Hydroponics (MISH) leverage Internet of Things (IoT) technology to
manage the complexities of hydroponic techniques, for growing food at home for everyday citizens.
Two prohibitive costs in the advancement of MISH systems are power consumption and equipment
expense. Reducing cost through harvesting ambient light can potentially reduce power consumption
but must be done accurately to sustain sufficient plant yields. Photosynthetic Active Radiation (PAR)
meters are commercially used to measure only the light spectrum that plants use, but are expensive.
This study presents Adaptalight, a MISH system that harvests ambient light using an inexpensive
AS7265x IoT sensor to measure PAR. The system is built on commonly found IoT technology and a
well-established architecture for MISH systems. Adpatalight was deployed in a real-world application
in the living space of an apartment and experiments were carried out accordingly. A two-phase
experiment was conducted over three months, each phase lasting 21 days. Phase one measured the
IoT sensor’s capability to accurately measure PAR. Phase two measured the ability of the system to
harvest ambient PAR light and produce sufficient yields, using the calibrated IoT sensor from phase
one. The results showed that the Adaptalight system was successful in saving a significant amount of
power, harvesting ambient PAR light and producing yields with no significant differences from the
control. The amount of power savings would be potentially greater in a location with more ambient
light. Additionally, the findings show that, when calibrated, the AS7265x sensor is well suited to
accurately measure PAR light in MISH systems.

Keywords: IoT; smart lighting; smart hydroponics; daylight harvesting

1. Introduction

The global increase in population [1] and rising urban migration [2] have drawn
attention to food security risks around the world [3]. These pressing issues have been
exacerbated by COVID-19 [4] and have led to an increased interest in home gardening [5–8].
Hydroponic systems are one method of home gardening that can fill this gap [9]. Hydro-
ponic systems are ideal as they are resource efficient and do not require soil. Micro Indoor
Smart Hydroponic (MISH) systems are small Internet of Things (IoT) appliances that range
from the size of a closet to a small device that sits on a countertop. They automate the
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maintenance of the hydroponic growth process. MISH systems can be constructed at home
with inexpensive IoT equipment [10,11] or are commercially available like the popular
Aerogarden [12].

This study focuses on home constructed open-air MISH (MISH-O) systems. MISH-O
systems expose plants to ambient light in addition to the artificial light the system provides.
However, commercial MISH-O systems do not monitor the light that plants receive, thereby
forgoing opportunities to conserve energy. Daylight harvesting, a technique widely used in
greenhouses, modulates supplemental lighting based on sunlight [13]. To ensure that plants
receive sufficient light, an expensive quantum meter is used to measure the Photosynthetic
Active Radiation (PAR). Quantum sensors measure the photon flux of light in moles, most
instruments represent this in µmol, per second, per m2 (µmols). These readings are used
to modulate the lights without sacrificing crop yields [14]. The cost of PAR sensors is
prohibitive, making it challenging for ordinary people to construct and develop efficient
MISH-O systems at home.

The act of non-academic citizens conducting or assisting in scientific research has led
to significant advancements in the field of ecology [15] and is known as citizen science.
Citizen science is being used in to advance research in areas of Urban Agriculture (UA)
to address food security [16–19]. Low-cost IoT equipment is successfully being used to
facilitate participation in citizen science [20]. This study aims to enable citizen science
through the development of cheap IoT MISH systems. Applying a citizen science approach,
to the research and development of MISH, has the potential to assist in alleviating food
insecurity. To facilitate this approach, research into inexpensive solutions for MISH-O
systems is crucial. The most expensive IoT equipment needed in a daylight harvesting
MISH-O system is the PAR meter. PAR meters are typically expensive and not practical
for residential home gardeners to purchase—for example, the widely used Li-Cor 190 is
approximately $500 and only available through commercial distributors.

Reducing the cost of PAR meters has been a goal for some time [21–23], but recent
advancements [24–26] have been enabled through the advancement of cheap IoT sen-
sors, microcontrollers, and data processing. Numerous studies have shown that these
technologies’ capabilities are comparable to commercial sensors [24–28]. For example,
Adhiwibawa and Kurniawan [27] measured the spectral values of paint pigments with
a simple TSL250 photodiode and an Arduino. Their results showed a strong significant
correlation of 0.98 with a lab-grade UV–Vis 1800 spectrophotometer.

Caya et al. [25] used an array of three VTB8440BH photodiode sensors and optical
filters that only allowed 400 to 700 nm light. These diodes connected to an Arduino to read
the sensors and the data were transferred to Raspberry Pi 2B. The array was compared to
an Apogee SQ-420 for evaluation and was found to have a correlation of 0.98, with only
a +/− 4.74% difference in the means [25]. This suggested that inexpensive IoT sensors
can be used to measure PAR light. However, a not fully integrated IoT framework was
used, and the data were simply stored and analysed later. With no IoT framework, the
data cannot be integrated into a smart system. Additionally, the calibration, which was
performed outdoors using direct natural sunlight, was done in a simple way by taking the
highest raw value from the Apogee SQ-420 and dividing it by the highest raw value of
the VTB8440BH. This was the only form of data processing used to calibrate the proposed
sensor array [25]. As their sensor array was only tested with direct natural sunlight, it may
struggle measuring PAR light from sources with different spectral qualities.

Kuhlgert et al. [24] developed a handheld open-source portable phenotyping device,
used to capture the environmental conditions of cultivation, for example, PAR levels, hu-
midity, and temperature. The system supports the idea of using inexpensive IoT equipment
in the field. The system was built with a custom board using an Arduino base, that inte-
grates several inexpensive sensors and cameras to record environmental data and upload it
via Bluetooth to a nearby computer. It utilized a single TCS34715FN on the outer side of
the device to measure PAR.
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The TCS34715FN has a photodiode with multiple built-in filters that separate the light
into Red, Green, and Blue sensor output channels. The RGB colours are combined in the
microcontroller to produce a white light colour sensor output resulting in the combined out-
put of RGBW. Similar to Caya et al. [25], the calibration used natural sunlight, but included
a wider range of conditions. They included data from shaded areas as well as overcast days.
The calibration was done using linear regression of the RGBW outputs against a Li-Cor
190R resulting in a correlation of 0.9967 and with a diffusion shield minimum of 0.9342.
The calibrated sensor was deployed in multiple instantiations of the phenotyping device.
The results were consistently accurate across all devices, demonstrating that an inexpensive
sensor can accurately measure PAR and be integrated in functional IoT system.

Kutschera and Lamb [26], building on Kuhlgert et al. [24], built another Arduino
based IoT device using the TCS34715FN to economically measure PAR. Similar to the
PARduino [23], the device’s sole purpose was to measure PAR and display the readings;
however, unlike Barnard et al. [23], there was no data logging capability. This was also
the case with Kuhlgert et al. [24]. The sensor was covered with a half hemisphere white
diffusion barrier. There was no calibration process, and the system employed the coeffi-
cients produced in Kuhlgert et al. [24]. The system was placed on the roof of a building
with no obstructions. Data were collected over 72 h, comparing the system to a Li-Cor
190R, capturing data every 20 min. The results show a strong correlation and indicate no
significant difference between the two PAR readings.

Both Kuhlgert et al. [24] and Kutschera and Lamb [26] focused on measuring sunlight.
Kuhlgert et al. [24] used sunlight to produce the regression coefficients and provided a
detailed account proving that the formula works well to predict PAR with sunlight on
overcast days and at different heights compared to the plants canopy (meaning high, low,
and in the middle). However, there was little information on how the PAR sensor was
tested using artificial light, despite providing evidence that it worked with artificial light.
Both Kuhlgert et al. [24] and Kutschera and Lamb [26] describe testing with violet LED
and florescent tube lights, but this is only a fraction of the light wavelength required for
plant growth.

The Kutschera and Lamb [26] study lack details of how the system was tested in
artificial light. A single scatterplot chart shows the data points of “various white light
sources” [26] (p. 2425) along with the regression formula results y = 0.5801x + 58.086.
The correlation appears weaker when compared to the scatterplot charts for sunlight and
overcast days. This suggests that the spectral composition of the artificial light sources are
not the same as sunlight and thus the one set of coefficients calibrated from the sun will not
be as accurate when used in a different setting as suggested by Nedbal et al. [29]. These
points indicate that an inexpensive IoT sensor, calibrated using only sunlight, will struggle
to accurately measure PAR light from a variety of sources.

Leon-Salas et al. [28] has used an AS7265x low-cost spectral sensor to create an al-
ternative to an expensive PAR meter. This sensor system is different from the previous
systems mentioned as it has three separate optical sensors combined on one board with
a single I2C interface rather a single photodiode. Where the TCS34715FN provides four
channel output (RGBW) [24,26], the AS7265x provides 18 channel output, with 20 nm
spectral channels ranging from 410 to 940 nm. The system is similar to the design of the
Kutschera and Lamb [26] using an Arduino and no datalogging capabilities. The data
used for the calibration were a combination of LED light, fluorescent lamp light and solar
light. The sensor was calibrated with a lab-grade Black Comet spectroradiometer. The
raw values from the AS7265x were mapped using vector quantization to count µmols for
each channel. This made the calculation of PAR easy by simply adding the µmols for each
channel between the PAR spectrum up and arriving at the PAR equivalent. It was then
tested under 10 different lighting conditions including various sunlight conditions and four
different combinations of Red, Green, Blue, and White LED lights as well as a combination
of sun and artificial light in a building atrium.



Horticulturae 2022, 8, 105 4 of 28

Incredibly, the inexpensive sensor, when trained with a lab-grade spectrometer, and
adjusted for correction, outperformed the industry standard Li-Cor 190 quantum sensor [28].
It should be noted that the purpose of their sensor system was not integrated with any IoT
system and shows great potential for measuring PAR economically in a MISH IoT system.
The calibrated AS7265x and a Li-Cor 190R were compared against a spectroradiometer. The
results showed that the trained AS7265x performed better than the Li-Cor 190R in every
condition with a average error of 6.83 compared to 12.51 for the Li-Cor 190R [28].

Lork et al. [30] used a standard ISL29125 lux meter to measure PAR light with an
unspecified method of calibration, likely a conversion formula. This is a common approach
also used in all versions of MIT’s Food Computer [11,31]. There are a number of well-
established conversion formulae available for lux [32]. However, these formulae only work
with known spectral compositions [32]. This makes this sensor and approach for estimating
PAR undesirable for our system as we are aiming to incorporate both sunlight and LED
light combined.

The Lork et al. [30] system was classified as a MISH-C system and uses the Nutrient
Film Technique (NFT), applying a film of nutrients to the roots of the plant with a stream
of water. The system was built on a RPi 3 with an Arduino-based microcontroller and
standard hydroponic system sensors attached: humidity, temperature, EC pH, as well
as a camera. The system included image monitoring, a full data logging function, and a
smart adapting light system that tracked the price of electricity and leaf size and adjusted
the lighting based on these among other variables [30]. While it can be safely assumed
that their PAR readings were not as accurate as other studies, they were still able to save
money, by accounting for electricity price in their smart lighting algorithm and maintain
acceptable biomass for their lettuce crop. This demonstrates potential for integrating an
economical IoT sensor into a smart lighting MISH system despite a low level of accuracy
measuring PAR.

The most relevant systems to our objective are those described by Jiang et al. [33]
and Mohagheghi and Moallem [34]. Both present systems that use inexpensive sensors
integrated into a smart lighting system, with the purpose of harvesting daylight to conserve
resources. Daylight harvesting is a technique successfully used in both buildings and
greenhouses to account for sunlight and adapt the lighting accordingly, providing a more
efficient use resources [14,34–37]. Both Jiang et al. [33] and Mohagheghi and Moallem [34]
utilize the TCS34725 light sensor to estimate PAR in their smart lighting systems.

Mohagheghi and Moallem [34] used the set points of the highest PAR value provided
by the manufacturer, the wattage, and the values provided for the spectrum by Ryer [38]
in their calibration formula. As with Lork et al. [30], there was no comparison to any
quantum sensor or lab spectrometer to validate the accuracy of their PAR measurements.
The experiment took place in a closed grow tent that used a centrally positioned halogen
light to simulate sunlight and two red and blue spectrum grow lights positioned at a
45-degree angle on both sides of the plants. This system used the calibrated TCS34725
to dim the grow lights according to a given setpoint for DLI total. The system was only
demonstrating the ability to provide dimmable supplemental red and blue light effectively.
No plants were grown. The system was also not IoT integrated.

Finally, Jiang et al. [33] produced a MISH-O system that fully integrates the TCS34725
in a smart lighting system that harvests daylight to grow microgreens. The system uses
a flood and drain hydroponic technique. The lighting that is provided uses two pro-
grammable (QuantoTech) luminaires composed of red and blue spectrum lights, building
on Mohagheghi and Moallem [34]. Four TCS34725 sensors were used to measure the
amount of red and blue ambient light, two near the window and two on the opposite
side. Using Mohagheghi and Moallem’s [34] model, the readings were used to dim lights
according to the minimum amount of desired supplemental light with reference to the
incoming sunlight. In one experiment, they used desired set points from the raw readings
of the TCS34725, rather than PAR, for both the red and blue spectrum. They then monitored
ambient light and dimmed the red and blue light, in steps of 10%. In another experiment
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growing kale microgreens, they mapped these set points to the PAR reading of an Apogee
MQ-501 and then estimated PAR and used this to modulate the red and blue lights. In
both experiments, they achieved total energy savings between 34% and 21% [33]. When
comparing the fresh weight of the control to that of the dimming system treatment, the
adaptive light yield was slightly greater in fresh weight [33].

Jiang et al.’s [33] system is a full IoT smart system, implemented on a RPi. It uses
a multiplexer to connect the multiple sensors on the I2C bus and an analog-to-digital
converter for humidity and moisture sensors as well as a camera for canopy monitoring.
The PAR meter is connected via USB serial and dimming is implemented on the LED
controllers via a Wi-Fi connection. Data are fully logged and viewed through a dashboard
on a browser. It is important to note that the dimming is not controlled directly by the
system. The RPi sends a setting to the luminaires that dim accordingly in 10% steps. This
leaves gaps in granularity of the dimming percentage and relies on the control of a separate
external system to adjust the lights. Additionally, the calibration for the TCS34725 was not
tested for accuracy with PAR, it is only assumed to be correct.

Over the years, the progress toward an inexpensive PAR meter has made significant
strides with most recent work of Leon-Salas et al. [28] performing with greater accuracy than
the Li-Cor 190R. Table 1 shows the low-cost sensors that have been used in the development
of measuring PAR economically over the last five years. Of these studies, only two have
applied their PAR light alternatives in an adaptive lighting system. As demonstrated in
Table 1, there has been little work in exploring the application of these cheap methods of
measuring PAR to harvest daylight through adaptive lighting for MISH systems. Out of the
studies examined, the systems that developed the economical PAR measurement methods
have not been integrated in full IoT systems. The systems that do use cheap sensors to
estimate PAR in full IoT systems, use sensors that have limited abilities to capture the
red spectrum for PAR, stopping at 615 nm [33,34]. Otherwise, they use sensors designed
to measure luminous flux that focus on 555 nm range [30]. Additionally, Lork et al. [30]
and Mohagheghi and Moallem [33] use standard techniques that convert various sensor
inputs to PAR. While Lork et al. [30] use lux readings converted to PAR, Mohagheghi and
Moallem [33] use watts. Both calibration formulae are dependent on knowing the specific
spectral makeup of the light source for the formula to work. Additionally, the systems were
not demonstrated in the environment in which a MISH system would actually be deployed.
There is a clear gap for research into the area of an economical PAR sensor that can be
applied into a full MISH-O system to harvest daylight in an actual real-world setting.

Table 1. List of studies and the sensors that were used to develop low-cost PAR meters and/or,
integrate them into an adaptive lighting system.

Sensor Studies Low-Cost
PAR Meter Adaptive Lighting

VTB8440BH Caya et al., 2018 x

TCS34715FN Kuhlgert et al., 2016
Kutschera and Lamb, 2018 x

ISL29125 Lork et al., 2020 x x

AS7265x Leon-Salas et al., 2021 x

TCS34725 Jiang et al., 2021
Mohagheghi and Moallem, 2021 x x

This study presents Adaptalight, a unique MISH-O system, building on the previ-
ous IoT MISH systems infrastructure and components. Adaptalight is a fully developed
MISH-O system with a smart LED lighting system used to harvest daylight. Firstly, this
study shows the suitability of the AS7265x as the choice sensor for economically measuring
PAR and demonstrates the limitations of the TCS34725. Next, a calibrated AS7265x is inte-
grated into the Adaptalight system to harvest ambient PAR light, similar to Jiang et al. [33].
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However, to address the light modulation issues identified in Jiang et al.’s [33] system,
Adaptalight uses a precise, direct pulse width modulation (PWM) control of the LED power
source. Finally, this study evaluates the systems performance in a real-world setting, in an
apartment in Dubai, UAE. The next section will present the system design used to construct
the MISH-O system.

2. Materials and Methods
2.1. Adaptalight System Design

The system was constructed and deployed in an apartment living area. All system
components were purchased locally. The system uses a flood and drain hydroponic tech-
nique. The flood table, 120 cm × 70 cm, was built to accommodate two 55 L trays from
IKEA, that serve as flood tables. The nutrient reservoir is a 130 L IKEA storage tote that fills
both 55 L trays using a Dymax 25-Watt 1200 L per hour water pump. The LED grow lights
were locally sourced through Amazon.ae, each 300 mm × 240 mm with 110 W dimmable
power supply. The LED spectral composition is 14 × 660 nm, 96 × 5000 k Samsung LM281B,
192 × 3000 k, 1 × 760 nm. The IoT system design is focused on the smart light aspect of
MISH systems and therefore nutrient solution monitoring and plant growth monitoring
are done manually. The database and dashboard servers were set up locally on services
that could easily transition to identical services located in the cloud. For this study, they
were kept locally to reduce cost.

This study follows Peffers et al. [39] DSR Methodology, which has been iterated
twice to improve the design of the system. The final resulting system architecture is
shown in Figure 1. The first version incorporated the Adafruit TCS34725 [33,34]. After
attempting calibration, the limitations of the sensor was evident and it was changed to
the SparkFun AS7265x [28]. Incorporating this sensor changed the design as it needed a
separate microcontroller. An Arduino Uno was added to read sensor data on the I2C bus.
Initially, the Raspberry Pi 4 (RPi) was used for PWM. Unfortunately, the hardware created
a noticeable pulse that was distracting to apartment residents. This was substituted with an
Arduino Uno for greater reliability and finer granularity for light control. The AS7265x and
PWM did not share the same microcontroller due to system data synchronization issues.
MySQL was found too time consuming and was replaced with InfluxDB, a time series
database more suited to IoT. Grafana, a dashboard service, was added to create the data
monitoring system.

2.2. Adaptalight IoT Architecture

As shown in Figure 1, the core of the system is a RPi that is running Raspberry Pi
OS and Node-RED as the middleware. The RPi connects to a local area network using
standard Wi-Fi. It has a statically assigned IP address making it easily locatable. It has
three different services available at the same IP address with different TCP port numbers,
Node-Red 1880, Grafana 3000, InfluxDB 8888. GPIO pins connect two relays that are actu-
ated with Node.js libraries. These relays control the water pump and the LED luminaires.
USB serial connections communicate with two Arduino Uno’s, using a built-in Node.JS
library. The Node-RED MQTT client was used to receive MQTT packets over Wi-Fi to
integrate the Apogee SQ-520 sensor into the system.

The Apogee SQ-520 was used to measure PAR in the system, similar versions of
this sensor were used in Jiang et al. [33] and Mohagheghi and Moallem [34]. Due to
regional availability constraints, this was used instead of the Li-Cor190. The Apogee
SQ-520 connects via USB and can only be read with a Windows software, Apogee Connect.
An Asus VivoStick TS10 x64 SBC was used to run Apogee Connect and read the sensor
data. Python was used to build a software that creates a MQTT broker and send. The Asus
VivoStick connects via the Wi-Fi LAN to send the MQTT packets to the RPi [40].
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Figure 1. Adaptalight architecture diagram—this shows the physical components as well as the
services used to create the system.

Two Arduino Unos are used in the system connected via Node-RED’s serial library.
One Arduino connects the AS7265x on I2C bus and reads data every 10 s. Another Arduino
is used to control the dimming of the LED with a MOSFET connected to the Arduino
analogue PWM pin. The PWM modulation uses the default 8 bits to adjust the voltage with
values between 0 and 255. This gives direct control of the brightness levels and greater
granularity than Jiang et al. [33].

The LED light and the pump are connected to relays that are controlled through Node-
RED RPi GPIO pin library (Figure 1). Node-RED scheduling libraries are used to actuate
the relays according to user settings. To measure the power of the LED lights, a Broadlink
BestCon SCB1 was placed inline. These data were not integrated into the database and was
collected separately through a mobile app that provided both hourly and daily readings.

2.3. Adaptalight Software System Design

The Adaptalight system, in Figure 2, is made of five processes and three data stores.
The system compares the real-time µmols to the desired user threshold. The user setting,
stored in µmols, are stored directly in the database. To change the threshold, the database
needs to be updated directly. In Figure 2, the sensor data from Apogee SQ-520 are referred
to as µmols. The AS7265x provides 18 spectral channels readings, referred to in Figure 2 as
the raw spectral readings.
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The sensor data interface creates three JSON objects from the data. The µmols and raw
spectral readings are combined and sent with a timestamp to InfluxDB. Storing this data
together eases access for analysis tools and populating the dashboard. The model predicted
µmols process, in Figure 2, runs data through a trained model deployed in the standard
multiple linear equation below.

P = A + C1 × X1 + . . . + C18 × X18

In the equation P is the predicted µmols, which is the result of adding A, the alpha
intercept, to the product of C, the coefficient, and X, the raw spectral reading. There are
18 sets of corresponding spectral channels and coefficients that are used in calculating the
predicted µmols. The predicted µmols is forwarded to the dimming data aggregator, and
to the dimming modulation process.

Dimming modulation uses the algorithm in Figure 3 to compare the predicted µmols
to user setting µmols threshold. This will generate a PWM setting integer, which the
dimming modulator uses to dim the lights accordingly. Finally, in Figure 2, the dimming
data aggregator combines three JSON objects, the current PWM setting, the predicted
µmols, and the µmols readings from the Apogee SQ-520. These are aggregated with a
single timestamp to eliminate time drift, then sent to an InfluxDB table in the dimming
data store.
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The dashboard display process, in Figure 2, uses Grafana to issue queries to the both
the dimming data store and the raw spectral values to create an easy to monitor user
interfaces pulling together all the data generated from the lighting system in one place.

To evaluate the effectiveness of the dimming algorithm in Figure 3, the Apogee SQ-520
data were routed to the dimming modulation process in place of the predicted µmols. The
user setting was set to 200 µmols. As expected, with an increase above 200 µmols, the PWM
increases accordingly, causing the LED lights to dim. The dimming algorithm in Figure 3,
is the second iteration. A 30% adjustment was added because the system processes data in
10 s intervals but adjusting the PWM by one step every 10 s did not provide the sufficient
responsiveness in the first iteration. The effectiveness of the 30% PWM adjustment, in
Figure 3, is clear. In Figure 4, the sunlight increases and the PWM signal closely tracks the
sunlight. When the sudden spike of sunlight occurs at 09:07, the system quickly tracks
moving from 9 PWM to 45 PWM. Again, when the sunlight finally drops at 09:55, within
60 s the PWM stabilizes at 162 and continues tracking. In testing, the PWM and µmols have
a strong significant correlation (r(450) = 0.71, p < 0.001), successfully demonstrating the
system and algorithm’s control abilities.
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Figure 4. Evaluating the Adaptalight dimming algorithm. The times shown are when the most
ambient light comes into the system. The desired setting or 200 µmols was used. When PWM
increases, the lights dim.

2.4. Sensor Evaluation

This section discusses the evaluation of two sensors and the suitability of linear
modelling for calibration. The evaluation for each followed a three-step process. First, data
were collected for model building, next the best model was selected, and finally the model
was deployed for performance evaluation in the Adaptalight system.

2.4.1. Evaluating TCS34725 Sensor

First, a calibration approach for the TCS34725 was selected. Jiang et al. [33] and
Mohagheghi and Moallem [34] both use this sensor but do not fully report methods for
building a calibration model. Jiang et al. [33] used a mapping process while Mohagheghi
and Moallem [34] uses an opaque calibration formula not readily available. Therefore, a
linear modelling technique was selected based on Kuhlgert et al.’s [24] successful work
with a similar sensor TCS34715N. To derive the standard linear model format Y = A + Bx.
The Apogee SQ-520 µmols served as the dependent variable and TCS34725 as the indepen-
dent predictors.

Three different models were constructed with different data sets. The sensor was
mounted in the assigned location of the system near the window, collecting sensor read-
ings every 30 s. The window faces eastward toward the courtyard on the first floor.
Direct sun was present in the morning for around 120 min a day. Model 1, in line with
Kuhlgert et al. [24], was built using only sunlight data recorded over 12 days. Model 2,
in line with Jiang et al. [33], was constructed incorporating LED light in the data set over
15 days and used three permutations: exclusively LED light, exclusively sunlight, and a
combination of LED and sunlight. Model 3 used a curated version of Model 2 data set.
It included two of each value, for all permutations, covering the entire range. Based on
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the R2 and Mean Squared Error (MSE) in Table 2 Model 1 and Model 3 were selected for
evaluation. The goodness of fit shows that Model 1 is the best. Model 3 was also evaluated
based on Jiang et al.’s [33] success while using a model that incorporated the LED light in
the calibration.

Table 2. Goodness of fit matrix for TCS34725 calibration Models 1, 2 and 3. All models were
significant with a p ≤ 0.000.

Model 1 Values Model 2 Values Model 3 Values

Observations 11,446 71,701 105
DF 10,297 64,526 100
R2 0.994 0.953 0.975

MSE 14.86 300.17 256.98

Model 1 and Model 3 were deployed during the evaluation of the PWM dimming
algorithm discussed in Section 2.3. Observing the system’s response over 48 h showed that
both Model 1 and Model 3 had issues predicting µmols to an acceptable level. Figure 5
shows clear evidence of a strong significant correlation. However, there is a clear gap where
the sensor cannot perform. In Figure 5, the same performance gap can be seen for Model 1
and Model 3 despite different light intensities, exposing the sensor’s limitation. This will
not work to dim lights accurately.
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Figure 5. These show the correlation of the deployed models over a 48 h period during the PWM
dimming evaluation experiment. Model 1 had a correlation of 0.911 and Model 3 had a correlation of
0.886, both with p < 0.00.

Based on this analysis, the TCS34725 is not suitable to use in any setting for sensing
PAR light. This is further supported by the limitation of the red LED spectrum for the
TCS34725. It only measures up to 615 nm, while PAR goes to 700 nm. This sensor should
be avoided when measuring PAR light. The Sparkfun AS7265x has a wider spectrum and
accurate results as shown by Leon-Salas et al. [28].

2.4.2. Evaluating AS7265x Sensor

The AS7265x has three optical sensors, and each sensor has six channels. Each channel
is 20 nm in width and covers the spectrum from 410 to 940 nm. Calibration data were
captured over five days, in 30 s intervals, using the same combinations of light as Model 3.
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Two linear regression models were constructed using the Y = A + Bx. Model 4 using all
18 channels as coefficients and Model 5 using only 12 channels in the PAR spectrum. The
Apogee SQ-520 was used for the dependent variable in the Y value, in units of µmols, and
each of the channels served as the independent variable in X value. Based on the goodness
of fit statistics in Table 3, Model 4 was selected for deployment evaluation, Appendix D
shows the B coefficients for the model. These preliminary findings suggest an advantage
using all 18 channels. This is in line with a previous study that used all 18 channels to
measure PAR Leon-Salas et al. [28].

Table 3. Goodness of fit matrix for AS7265x calibration Models 4 and 5. All models were significant
with a p ≤ 0.000.

Model 4
410 to 940 nm

Model 5
410 to 705 nm

Observations 30,517 30,517

DF 30,504 30,504

R2 0.996 0.994

MSE 39.829 58.289

Model 4 was deployed for five days using the same settings used for performance eval-
uation of the TCS34725. Figure 6 shows the strong significant correlation (r(14,319) = 0.962,
p < 0.000) between the predicted values of the AS7265x and the Apogee SQ-520. Figure 7
shows a dashboard tracking the predicted µmols against the actual µmols over three
days. To demonstrate consistency, the date range selected included an overcast day,
21 January 2021. While there are some extreme outliers for the predicted µmols in both
Figures 6 and 7, overall, the pattern shows a sensitivity that responds in the same manner
as the Apogee SQ-520. These findings are in line with Leon-Salas et al. [28] and combine as
strong evidence for this method of model building and show that the sensor is well suited
to be deployed in the system.
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After this evaluation, the AS7265x was permanently mounted to conduct the two-
phase experiment shown in Figure 8. Once the sensor was permanently relocated, Model 4
no longer worked. The sensor produced extremely inaccurate predictions, leading to the
conclusion that the sensor must be placed where it is to be mounted, then data must be
collected to build the model. Only then will the sensor be able to accurately predict µmols
using linear modelling. The next section presents the methodology used to conduct the
two-phase experiment.

2.5. Adaptalight Experiment Methodology

This section presents the methods for the experiments carried out in the evaluation
phase of the Design Science Research Methodology (DRSM). This was a two-phase exper-
iment as shown in Figures 8 and 9. During system testing, it was demonstrated that the
Adaptalight smart lighting system works well with an industrial-grade PAR sensor. The
next step was to tune the system and replace the industrial sensor with the inexpensive IoT
sensor. This was done through a two-phase experiment. Phase one examined the ability of
the calibrated AS7265x to accurately measure PAR light compared with the Apogee SQ-520,
and served as control for phase two, while identifying adjustments. The second phase used
the calibrated AS7265x implemented in the Adaptalight MISH system to harvest ambient
light. Both phases are conducted on the apparatus described in Section 2.1. Shown in
Figure 8, the flood table is placed facing the only window to allow ambient light to come
into the system.

Lettuce (Lactuca sativa) was selected for both phases of the experiment. It is a thor-
oughly researched crop for hydroponic systems and evaluating lighting [13,41–44]. Grow
specification were from Brechner et al. [45] Frequency of flooding the benches was once
every 12 h. The nutrient electrical conductivity (EC) was maintained at 1150–1250 above
the baseline EC of the water. The pH was maintained at a level between 5.6 and 6.0. EC and
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pH were monitored daily. The nutrient solution is a locally available commercial-grade
A/B solution. A standard aquarium solution was used to adjust pH. Each growth was
started with 11-day-old seedlings and lasted 21 days in the system (Figure 9). Every 2 days,
the Apogee SQ-520 was alternately moved between the control and experimental chambers.
On day 10, trays A and B, in Figure 8, swapped places, to ensure even coverage. On day 21,
the plants were harvested and dried in an oven for 72 h.
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Figure 8. Phase one shows the system setup for comparing the two sensors, trays are denoted with
A and B in each chamber. Phase two shows the system setup for implementing Adaptalight light
system on the ambient chamber. The LED chamber uses a barrier to block ambient light. The sensor
placement is at the edge to best capture the ambient light.

Phase one, seedlings were transplanted into the grow trays. The height of grow
light was adjusted so all the plants received 200 µmols at the edge of the tray resulting
in 230 µmols at the centre. A photoperiod of 18 h to meet the recommended daily light
integral (DLI) for lettuce was set to maintain DLI of 14 [46–48]. A functional DLI was
chosen, which can easily be used as a threshold for dimming. Using 200 µmols also allows
the system more sensitivity to ambient light.

Phase two added a LED grow light to the ambient light side, with the same speci-
fications from phase one including height and photoperiod settings. The ambient side
grow light was connected to the Adaptalight modulation system. Both the lights were
connected to a smart meter to track the amount of kilowatt hours. The lighting modulation
system was set to monitor the ambient light coming into system and dim the grow lights
accordingly. A minimum threshold of 200 µmols was set. When ambient light caused
readings to exceed 200 µmols, the grow lights were dimmed accordingly.
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Due to regional product availability and time constraints, only one Apogee SQ-520
was procured. Because of this, the sensor was alternated between chambers during the
experiment rather than having one for each side. Since the experiments were conducted in
a real-world application, the quality of ambient light varied from day to day depending
on the cloud cover and air quality index of Dubai. The sensor placement was oriented
to optimally capture the ambient light coming through the window. Because the LED
light is predictable, the focus was optimally on measuring the light entering the window.
Additionally, due to availability and time constraints, only two AS7265x were procured.
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Figure 9. This shows two treatments and the measurements collected for the operationalised variables.
PAR light indicates the Apogee SQ-520 sensor, and the predicted PAR light is the calibrated AS7265x,
both measured in µmols. The spectral readings are the raw values of the AS7265x 18 spectral channels
of the. Phase two is similar to phase one, with notable exceptions. Only the calibrated AS7265x is
used to measure PAR light on both sides. The measurement of kilowatt hours is added as is the PWM
dimming signal sent to the lights.
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3. Results

This section presents the findings for both phases of the Adaptalight system experi-
ments carried out between 18 March and 9 May 2021. The results are organized by sensor
results, plant growth results, and power consumption results.

3.1. Sensor Results

A new linear model was created after mounting the sensors. Data were captured for
both the ambient and LED chambers, shown in Figure 8, for five days. This was used to
construct the prediction models used in phase one. It is important to note that no light
modulation was carried out in phase one, only the observation of the models’ performance
and plant growth. Appendix A shows the goodness of fit statistics and the coefficients used
for both sides. The ambient model (R2 = 88.7 MSE = 56.945) was less accurate than the LED
(R2 = 99.8 MSE = 22.78).

Figure 10 shows the AS7265x with the phase-one LED light model tracking against the
Apogee SQ-520. The light was calibrated with only the LED spectral values and consistently
reported a small percentage over the actual values. The initial deployment of the phase-one
ambient model, in Appendix B, immediately flagged an issue and corrective measures were
taken. The model produced the inverse predictions of the actual µmols. A simple inversion
modification was created with a negative factor of one. Figure 11 shows the tracking for
the ambient light model after the adjustment was made.
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For phase-one results, the mean PAR light values of the calibrated AS7265x on the LED
light treatment side (M = 152.90, SD = 98.48) was 19.24 µmols greater than the actual µmols
from the Apogee SQ-520 (M = 133.65, SD = 86.60). This small but significant difference
(t(63,358) = 1.96, p < 0.001), supports the capability of the AS7265x of measuring PAR
light consistently. Similar results are demonstrated on the ambient side. The PAR light
values of the calibrated AS7265x with modifier (M = 11.92, SD = 12.36) were 5.96 µmols
greater when compared to the actual µmols (M = 5.96, SD = 7.06). This significant difference
(t(63,198) = 1.96, p < 0.001) is in line with the LED light chamber and further supports the
calibrated AS7265x.

Tracking models in Figures 10 and 11 show both calibrated sensor deployments
align closely to the commercial PAR sensor readings. As expected, based on the R2 and
MSE results of the linear modelling, the phase-one LED model performed better than
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the phase-one ambient model. A Pearson’s Correlation was used to test the relationships
between the sensors. There was a significantly strong positive correlation (r(63,358) = 0.988,
p< 0.001) between the calibrated AS726x on the LED light side and the Apogee SQ-520. On
the ambient light side, the calibrated AS7265x also showed a significant strong positive
correlation with the Apogee SQ-520 (r(63,198) = 0.726, p < 0.001), although slightly less.
These two correlation statistics, along with the significant results of the t tests, strongly
support the use of a calibrated AS7265x in place of a commercial PAR meter for measuring
PAR light.
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Figure 11. The modified calibration results for the AS7265x in the ambient chamber compared to the
Apogee SQ-520 for days six to 11.

The LED model of phase one performed well and was deployed in phase two. To
validate the model and check for adjustments, prior to deployment, 30 h of LED data were
captured. The LED light was set to 100 µmols for six hours and then 200 µmols for 24 h
shown as in Figure 12. The significant difference of means (t(2338) = 1.96, p < 0.001) showed
the predicted model (M = 199.678, SD = 41.742) was 8% greater than the actual µmols values
(M = 182.792, SD = 38.624) of the Apogee SQ-520. This difference was considered and a
reduction of 8% was applied to the LED model from phase one and then deployed to both
chambers of phase two, as shown in Figure 8.

As expected, over the course of the 21 day experiment, the calibrated sensor in phase
two performed similar to phase one. The mean of the treatment chamber’s AS7265x
(M = 149.71, SD = 86.15) with the calibrated adjustment was 12.88 µmols significantly
greater (t(43,796) = 1.96, p < 0.001) than the Apogee SQ-520 (M = 136.829, SD = 86.468).
Compared to the control side the AS7265x (M = 182.979, SD = 104.242), with no adjustment,
had a significantly greater mean of 33.56 µmols (t(63,358) = 1.96, p < 0.001) than the Apogee
SQ520 (M = 149.410, SD = 85.023). This demonstrates the effectiveness of the calibration
adjustment and further supports the use of the AS7265x sensor in place of a commercial
PAR sensor.
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Figure 12. Deploying the phase-one LED model to the ambient side sensor for 30 h for calibration.
The Apogee SQ-520 is shown as actual µmols and the AS7265x with phase-one LED model is the LED
light predicted µmols.

The AS7265x was used as the input for the PWM controller. Figure 13 tracks the sensor
values with the PWM signal over two days. As the PAR light increases above 200 µmols, the
PWM signal increases to dim lighting. When the PAR light comes back down to the thresh-
old, the PWM signal also decreases maintaining a homeostasis. A Pearson’s Correlation
was used to analyse this relationship and a strong positive correlation (r(60,480) = 0.963,
p < 0.001) was found between the predicted µmols and the PWM dimming signal.
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Figure 13. Day one and two of phase two showing the system fully functional, with PWM Diming
tracking closely with the PAR light readings. Note PWM increase during morning sunlight hours.
PWM values are in the range 0–255. At 255, the lights are off. At 0, the lights are at full power.
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The PWM’s strong significant correlation with the predicted µmols along with the
evidence from phase one and minor differences between the AS7265x and Apogee SQ-520
combine to corroborate that a calibrated inexpensive IoT sensor can effectively replace the
commercial-grade PAR light meter.

3.2. Plant Growth Results

Plant growth performance for both phases, shown in Figures 14 and 15, is reported in
Table 4, which shows the total yield for fresh and dry weights along with the individual
tray weights. The total yield for phase-one chambers differed greatly, while phase-two
chambers were similar. A one-way ANOVA was used to determine if these differences
were significant for both fresh and dry weights. The four lighting conditions resulted in
a significant difference between the fresh weights (f(3, 36) = 63.68 p ≤ 0.001) and the dry
weights (f(3, 36) = 87.54 p ≤ 0.001). A post hoc comparison was conducted using Tukey
HSD, in Appendix C, to compare the means between chambers and yield measurement
types. As expected, there is a large significant difference between fresh and dry yields
in phase one, as noted in Table 5. The phase-two results were also as expected, with no
significant difference between the fresh and dry weights. There was also no significant
difference between the phase-one LED fresh weights and the phase-two treatment fresh
weights. However, there was a small significant difference between the dry weights of the
phase-one LED and the phase-two treatment. These results show the Adaptalight dimming
system produces similar results as a standard light regime.
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Table 4. Plant growth totals for phases one and two.

Experiment Phase Chamber Tray Fresh Weight
(grams)

Dry Weight
(grams)

Phase One

LED

LEDA 593.17 28.50

LEDB 325.50 17.68

Total LED Tray Weight 918.65 46.1875

Ambient

AmbA 4.10 0.13

AmbB 0.52 0.016

Total Amb Tray Weight 4.62 0.14

Phase Two

Treatment

TreA 535.2 17.35

TreB 355.6 12.85

Total Tre Tray Weight 890.8 30.2

Control

ConA 498.5 16.25

ConB 398.5 14.25

Total Con Tray Weight 897 30.5
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Table 5. Means of the fresh and dry weight plant yields for phases one and two.

Experiment Phase Chamber Yield Measure Type Mean
(grams) Std Deviation

Phase One

LED
Fresh 91.86 28.21

Dry 4.48 1.15

Ambient
Fresh 0.46 0.50

Dry 0.01 0.01

Phase Two

Treatment
Fresh 89.70 10.54

Dry 3.05 0.21

Control
Fresh 89.08 18.93

Dry 3.02 0.47

3.3. Power Consumption Results

To determine if the Adaptalight dimming system was able to conserve power by
modulating the lights, kilowatt hours were tracked and analysed in phase two between
control and treatment chambers. Figure 16 shows the total kilowatts consumed each day
of the experiment over the 21 day period. The LED luminaire in the control chamber was
manually set to 200 µmols using an analogue potentiometer. It performed as expected,
staying around 1.62 kWh and 1.63 kWh. The treatment was completely modulated from
the system based on the amount of ambient light coming into the system. From day one to
four, the Adaptalight system showed very slight differences of 0.01 kWh. However, as the
experiment went on, the power conservation increased until the last three days when the
ambient light was less, and the power increased to compensate. Over the 21 days, the total
power consumption for the Adaptalight system was 0.72 kWh less than the control. In a
scenario with more ambient light the power savings would have been greater.
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Figure 17 shows the hourly mean of each hour, across the 18 h photoperiod. As
expected, the power consumption for the treatment drops in the afternoon and increases as
the sun goes down. This is consistent with the PWM modulation shown in Figure 13. A
two-sample t-test was used to determine if the Adaptalight system reduced the amount
of power consumed compared to set standard lighting regime. The total mean of the
treatment (M = 0.089, SD = 0.005) was significantly lower (t(754) = 6.108, p < 0.001) than
the control (M = 0.090, SD = 0.002). While the difference is slight, it is significant, showing
that the system does conserver power. To further eliminate other contributing factors that
may be responsible for the reduction in power consumption, a two-way ANOVA was
performed on the means of each hour by chamber. The results showed that there was
significant interaction between the time of day and the chamber on the power consumption
(f(17,720) = 20.76, p < 0.001). This further supported the notion that the time of day in the
treatment chamber was responsible for the decreased power consumption.
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4. Discussion

The results show that inexpensive IoT sensors work comparably to commercial sensors
for measuring PAR in MISH systems. These results contribute to previous efforts, as shown
in Table 1, to find PAR sensor alternatives. This enables citizen science and opens avenues
of research into MISH systems, by increasing low-cost access to important metrics for
building MISH lighting solutions. The results specifically favor the AS7265x sensor for
measuring PAR light from various sources, supporting the findings of Leon-Salas et al. [28].
The limitations found of the TCS34725, in combination with the performance of models
that included spectrums up to 910 nm, emphasize that an inexpensive sensor alternative
must at minimum, cover the entire PAR spectrum range, and suggests that including far
red and infra-red increases model accuracy.

A method for building calibration models was created. Unlike Lork et al. [30] and
Mohagheghi and Moallem [34], the method of calibration does not require the knowledge
of power consumption or the spectral composition of the light source. However, it does
require a commercial sensor for initial calibration and recalibration when the sensor is
repositioned. The results suggest the accuracy of the AS7265x to measure PAR is possibly
attributed to the quality of the instrument that it is calibrated against. Leon-Salas et al. [28]
used a single model to accurately measure ten different types of light sources, suggesting
that a single calibration for the sensor to measure PAR light under all conditions is possible.
The Adaptalight results show a pattern supporting this possibility. The phase-one LED
model used for phase-two treatment chamber with only small adjustments successfully
measured two different light sources simultaneously. While linear modelling calibration
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did not achieve the same accuracy as Leon-Salas et al.’s [28] vector quantization, one
difference that may account for the accuracy gap was the lack of a light diffuser on the
Adaptlight sensors.

The Adaptalight system used the SparkFun version of the AS7265x, it does not come
with a dome light diffuser, like the AMS AS7265x evaluation kit used in Leon-Salas et al. [28].
This may be responsible for the exaggerated sensitivity observed while measuring sunlight,
shown in Figure 11. At points, in Figures 16 and 17, the power consumption surpasses that
of the control lighting regime. This is likely due to the model values being anywhere from
8% to 18% greater than the actual values. This may have been reduced with the application
of a diffuser. Additionally, calibrating the sensor with only LED light was the most effective
way of harvesting daylight, any light beyond the baseline was easily identified and the
system dimmed, even without the diffuser. However, irrespective of the diffuser, there is
no question that this sensor can accurately measure PAR, possibly better than any other
sensor at the time of this writing.

The Adaptalight system produced similar yields results to a standard lighting regime.
It was noted that the yield from the LED chamber of the phase one is slightly higher
than both chambers of phase two. While there were no significant differences in the fresh
weights, the dry weights showed a small significant difference. This is most likely attributed
to the size of the seedlings when transplanted into the system. Though all phases used
11-day-old seedlings grown from the same seed packet, seedlings for phase one were
slightly larger as can be seen in the day seven images in Figures 14 and 15. This would
account for the small differences of dry weights.

The first-floor apartment had sun in a small area for a brief period of the day, during
that time of the year. The goal was to measure this light and take it into account in the
system. The sunlight had most affect near the window as seen in Figures 14 and 15. The
sensor was positioned nearest the window to harvest this light to save power. Placing
additional sensors in the system to measure the back and side, as in Jiang et al. [33] and
Mohagheghi and Moallem [34] would not contribute to this and was beyond the scope
of this study. Even under these minimal conditions, the system harvested the small bit of
daylight coming into the system. This is promising for the future of daylight harvesting
in MISH-O systems. Future work may re-run these tests in different locations to further
document the power savings capabilities.

It was beyond the scope of this study to address the nutrient aspect of the plant growth.
To control for this, both chambers were given nutrient solutions from the same reservoir.
The nutrient reservoir was large enough that there was no need to adjust the pH or EC
through the experiments. Another aspect beyond the scope of this study was to examine the
affects of the apartment window glazing on the PAR light coming into the system, as noted
in Dangol et al. [49]. Finally, temperatures during sunlight hours were also considered
beyond the scope of this study. Because it is an open system and was conducted in the
living room of an apartment where the thermostat regulated the temperature to 23 ◦C, all
phases of the experiment were maintained at the same temperature.

5. Conclusions

This study proposed the Adaptalight MISH-O system, using inexpensive IoT sensors
for measuring PAR accurately and harvesting ambient light to save energy. The system
was constructed using entirely locally sourced components and was successfully demon-
strated in a home setting in Dubai, UAE. This study shows that the low-cost solutions can
sufficiently measure PAR values from artificial and natural light simultaneously. Using a
$50 commodity IoT sensor to perform in place of a $500 commercial PAR sensor. The Adap-
talight system modified LED light according to PAR values from the calibrated AS7265x, to
maintain threshold settings. There was no significant difference between the plant yields
when compared to the controls. The system design and inexpensive PAR sensor alternative
enables ordinary citizens to build energy efficient MISH-O systems to grow food at home.
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The findings also support the AS7265x sensor as the best suited sensor to economically
measure PAR.

Further research is required to improve the calibration methodology to establish a
one-time calibration for the AS7265x. Additionally, more research is needed to determine if
there is a need for a PAR level of precision in MISH-O settings.
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Appendix A

Table A1. Model coefficients deployed in phase one that were produced with a data set collected
over 5 days. For this phase, the sun side used a separate data set from the LED side.

Phase-One Deployed Linear Models

Ambient Light LED Light

Goodness of fit R2 = 88.7 MSE = 56.945 R2 = 99.8 MSE = 22.78

Intercept 0.579 0.417

410 nm −1.87 0.833

435 nm 1.925 −0.015

460 nm −0.918 0.008

485 nm 2.053 −0.037

510 nm −1.32 0.064

535 nm −0.378 −0.070

560 nm 0.528 0.033

585 nm −1.984 −0.036

610 nm 0.319 0.009

645 nm 0.814 0.008

680 nm 0.143 0.069

705 nm 0.987 −0.235

730 nm −0.943 0.135

760 nm 3.159 −0.060

810 nm −3.653 −0.657

860 nm 0.105 0.721

900 nm 0.524 −0.446

940 nm 2.234 −0.244
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Appendix C

Table A2. Phases One and Two Fresh Weight ANOVA Tukey Post hoc HSD.

(I) Chamber (J) Chamber Mean Difference (I–J) Std. Error Sig. Lower Bound Upper Bound

P1-Ambient-
Control

P1-LED Treatment −91.40 7.96 0.00 −112.83 −69.98

P2-Ambient +
LED-Treatment −89.24 7.96 0.00 −110.66 −67.81

P2-LED-Control −88.62 7.96 0.00 −110.04 −67.19

P1-LED Treatment

P1-Ambient-Control 91.40 7.96 0.00 69.98 112.83

P2-Ambient +
LED-Treatment 2.17 7.96 0.99 −19.26 23.59

P2-LED-Control 2.79 7.96 0.99 −18.64 24.21

P2-Ambient +
LED-Treatment

P1-Ambient-Control 89.24 7.96 0.00 67.81 110.66

P1-LED Treatment −2.17 7.96 0.99 −23.59 19.26

P2-LED-Control 0.62 7.96 1.00 −20.81 22.05

P2-LED-Control

P1-Ambient-Control 88.62 7.96 0.00 67.19 110.04

P1-LED Treatment −2.79 7.96 0.99 −24.21 18.64

P2-Ambient +
LED-Treatment −0.62 7.96 1.00 −22.05 20.81

Phases One and Two Dry Weight ANOVA Tukey Post hoc HSD

(I) Chamber (J) Chamber Mean Difference (I–J) Std. Error Sig. Lower Bound Upper Bound

P1-Ambient-
Control

P1-LED Treatment −4.47 0.28 0.000 −5.23 −3.70

P2-Ambient +
LED-Treatment −3.04 0.28 0.000 −3.80 −2.27

P2-LED-Control −3.01 0.28 0.000 −3.77 −2.24
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Table A2. Cont.

(I) Chamber (J) Chamber Mean Difference (I–J) Std. Error Sig. Lower Bound Upper Bound

P1-LED Treatment

P1-Ambient-Control 4.47 0.28 0.000 3.70 5.23

P2-Ambient +
LED-Treatment 1.43 0.28 0.000 0.66 2.20

P2-LED-Control 1.46 0.28 0.000 0.69 2.23

P2-Ambient +
LED-Treatment

P1-Ambient-Control 3.04 0.28 0.000 2.27 3.80

P1-LED Treatment −1.43 0.28 0.000 −2.20 −0.66

P2-LED-Control 0.03 0.28 1.000 −0.74 0.80

P2-LED-Control

P1-Ambient-Control 3.01 0.28 0.000 2.24 3.77

P1-LED Treatment −1.46 0.28 0.000 −2.23 −0.69

P2-Ambient +
LED-Treatment −0.03 0.28 1.000 −0.80 0.74

Appendix D

Table A3. Model 4 coefficients for AS7265x produced with the 5 day combined data set. This was the
model used in the full system deployment.

AS7265x Model 4 Linear Model Coefficients

Intercept −1.101

410 nm 0.647

435 nm −0.044

460 nm −0.146

485 nm 0.074

510 nm 0.384

535 nm −0.385

560 nm 0.472

585 nm −0.282

610 nm 0.067

645 nm −0.182

680 nm 0.003

705 nm 0.602

730 nm −0.093

760 nm −0.737

810 nm 0.542

860 nm 0.770

900 nm 0.091

940 nm −2.785
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