44 research outputs found

    Probing the Intergalactic Magnetic Field with the Anisotropy of the Extragalactic Gamma-ray Background

    Get PDF
    The intergalactic magnetic field (IGMF) may leave an imprint on the angular anisotropy of the extragalactic gamma-ray background through its effect on electromagnetic cascades triggered by interactions between very high energy photons and the extragalactic background light. A strong IGMF will deflect secondary particles produced in these cascades and will thus tend to isotropize lower energy cascade photons, thereby inducing a modulation in the anisotropy energy spectrum of the gamma-ray background. Here we present a simple, proof-of-concept calculation of the magnitude of this effect and demonstrate that current Fermi data already seem to prefer non-negligible IGMF values. The anisotropy energy spectrum of the Fermi gamma-ray background could thus be used as a probe of the IGMF strength.Comment: 11 pages, 4 figures, MN LaTeX style; accepted for publication in MNRA

    The Spectral Index Distribution of EGRET Blazars: Prospects for GLAST

    Get PDF
    The intrinsic distribution of spectral indices in GeV energies of gamma-ray--loud blazars is a critical input in determining the spectral shape of the unresolved blazar contribution to the diffuse extragalactic gamma-ray background, as well as an important test of blazar emission theories. We present a maximum-likelihood method of determining the intrinsic spectral index distribution (ISID) of a population of gamma-ray emitters which accounts for error in measurement of individual spectral indices, and we apply it to EGRET blazars. We find that the most likely Gaussian ISID for EGRET blazars has a mean of 2.27 and a standard deviation of 0.20. We additionally find some indication that FSRQs and BL Lacs may have different ISIDs (with BL Lacs being harder). We also test for spectral index hardening associated with blazar variability for which we find no evidence. Finally, we produce simulated GLAST spectral index datasets and perform the same analyses. With improved statistics due to the much larger number of resolvable blazars, GLAST data will help us determine the ISIDs with much improved accuracy. Should any difference exist between the ISIDs of BL Lacs and FSRQs or between the ISIDs of blazars in the quiescent and flaring states, GLAST data will be adequate to separate these ISIDs at a significance better than 3 sigma.Comment: 11 pages, 9 figures, emulateapj; accepted for publication in Ap

    New Theoretical Estimates of the Contribution of Unresolved Star-Forming Galaxies to the Extragalactic Gamma-Ray Background (EGB) as Measured by EGRET and the Fermi-LAT

    Get PDF
    We present new theoretical estimates of the contribution of unresolved star-forming galaxies to the extragalactic gamma-ray background (EGB) as measured by EGRET and the Fermi-LAT. We employ several methods for determining the star-forming galaxy contribution the the EGB, including a method positing a correlation between the gamma-ray luminosity of a galaxy and its rate of star formation as calculated from the total infrared luminosity, and a method that makes use of a model of the evolution of the galaxy gas mass with cosmic time. We find that depending on the model, unresolved star-forming galaxies could contribute significantly to the EGB as measured by the Fermi-LAT at energies between approx. 300 MeV and approx. few GeV. However, the overall spectrum of unresolved star-forming galaxies can explain neither the EGRET EGB spectrum at energies between 50 and 200 MeV nor the Fermi-LAT EGB spectrum at energies above approx. few GeV

    The Unresolved Star-Forming Galaxy Component of the Extragalactic Gamma Ray Background

    Get PDF
    We present new theoretical estimates of the contribution of unresolved star-forming galaxies to the extragalactic gamma-ray background (EGB) as measured by EGRET and the Fermi-LAT. We employ several methods for determining the star-forming galaxy contribution the the EGB, including a method positing a correlation between the gamma-ray luminosity of a galaxy and its rate of star formation as calculated from the total infrared luminosity, and a method that makes use of a model of the evolution of the galaxy gas mass with cosmic time. We find that depending on the model, unresolved star-forming galaxies could contribute significantly to the EGB as measured by the Fermi-LAT at energies between approx. 300 MeV and approx. few GeV. However, the overall spectrum of unresolved star-forming galaxies can explain neither the EGRET EGB spectrum at energies between 50 and 200 MeV nor the Fermi-LAT EGB spectrum at energies above approx. few GeV

    Contribution to the Extragalactic Gamma-ray Background from the Cascades of Very-high Energy Gamma Rays

    Full text link
    As very-high--energy photons propagate through the extragalactic background light (EBL), they interact with the soft photons and initiate electromagnetic cascades of lower energy photons and electrons. The collective intensity of a cosmological population emitting at very-high energies (VHE) will be attenuated at the highest energies through interactions with the EBL and enhanced at lower energies by the resulting cascade. We calculate the cascade radiation created by VHE photons produced by blazars and investigate the effects of cascades on the collective intensity of blazars and the resulting effects on the extragalactic gamma-ray background. We find that cascade radiation greatly enhances the collective intensity from blazars at high energies before turning over due to attenuation. The prominence of the resulting features depends on the blazar gamma-ray luminosity function, spectral index distribution, and the model of the EBL. We additionally calculate the cascade radiation from the distinct spectral sub-populations of blazars, BL Lacertae objects (BL Lacs) and flat-spectrum radio quasars (FSRQs), finding that the collective intensity of BL Lacs is considerably more enhanced by cascade radiation than that of the FSRQs due to their harder spectra. As such, studies of the blazar contribution to the EGRB by Fermi will have profound implications for the nature of the EBL, the evolution of blazars, and blazar spectra.Comment: 2009 Fermi Symposium, eConf Proceedings C09112

    The Effect of Blazar Spectral Breaks on the Blazar Contribution to the Extragalactic Gamma-ray Background

    Get PDF
    The spectral shapes of the contributions of different classes of unresolved gamma-ray emitters can provide insight into their relative contributions to the extragalactic gamma-ray background (EGB) and the natures of their spectra at GeV energies. We calculate the spectral shapes of the contributions to the EGB arising from BL Lacertae type objects (BL Lacs) and flat-spectrum radio quasars (FSRQs) assuming blazar spectra can be described as broken power laws. We fit the resulting total blazar spectral shape to the Fermi Large Area Telescope measurements of the EGB, finding that the best-fit shape reproduces well the shape of the Fermi EGB for various break scenarios. We conclude that a scenario in which the contribution of blazars is dominant cannot be excluded on spectral grounds alone, even if spectral breaks are shown to be common among Fermi blazars. We also find that while the observation of a featureless (within uncertainties) power-law EGB spectrum by Fermi does not necessarily imply a single class of contributing unresolved sources with featureless individual spectra, such an observation and the collective spectra of the separate contributing populations determine the ratios of their contributions. As such, a comparison with studies including blazar gamma-ray luminosity functions could have profound implications for the blazar contribution to the EGB, blazar evolution, and blazar gamma-ray spectra and emission.Comment: 8 pages, emulateapj format; 5 figures; accepted for publication in Ap

    Overview of the EUSO-SPB2 Target of Opportunity program using the Cherenkov Telescope

    Full text link
    During the Extreme Universe Space Observatory on a Super Pressure Balloon 2 (EUSO-SPB2) mission, we planned Target of Opportunity (ToO) operations to follow up on possible sources of 10PeV\gtrsim 10 \, {\rm PeV} neutrinos. The original plan before flight was to point the onboard Cherenkov Telescope (CT) to catch the source's path on the sky just below Earth's horizon. By using the Earth as a tau-neutrino to tau-lepton converter, the CT would then be able to look for optical extensive air shower signals induced by tau-lepton decays in the atmosphere. The CT had a field of view of 6.46.4^\circ vertical ×\times 12.812.8^\circ horizontal. Possible neutrino source candidates include gamma ray bursts, tidal disruption events and other bursting or flaring sources. In addition, follow-ups of binary neutron star mergers would have been possible after the start of the O4 observation run from LIGO-Virgo-KAGRA. The resulting exposure is modeled using the NuSpaceSim framework in ToO mode. With the launch of the EUSO-SPB2 payload on the 13th May 2023, this summarizes the ToO program status and preliminary data, as available

    Components of the Extragalactic Gamma Ray Background

    Get PDF
    We present new theoretical estimates of the relative contributions of unresolved blazars and star-forming galaxies to the extragalactic gamma-ray background (EGB) and discuss constraints on the contributions from alternative mechanisms such as dark matter annihilation and truly diffuse gamma-ray production. We find that the Fermi source count data do not rule out a scenario in which the EGB is dominated by emission from unresolved blazars, though unresolved star-forming galaxies may also contribute significantly to the background, within order-of-magnitude uncertainties. In addition, we find that the spectrum of the unresolved star-forming galaxy contribution cannot explain the EGB spectrum found by EGRET at energies between 50 and 200 MeV, whereas the spectrum of unresolved FSRQs, when accounting for the energy-dependent effects of source confusion, could be consistent with the combined spectrum of the low-energy EGRET EGB measurements and the Fermi-LAT EGB measurements.Comment: version accepted for publication in the Astrophysical Journa

    The Extragalactic Background Light Absorption Feature in the Blazar Component of the Extragalactic Gamma-ray Background

    Get PDF
    High-energy photons from cosmological emitters suffer attenuation due to pair production interactions with the extragalactic background light (EBL). The collective emission of any high-energy emitting cosmological population will exhibit an absorption feature at the highest energies. We calculate this absorption feature in the collective emission of blazars for various models of the blazar gamma-ray luminosity function (GLF) and the EBL. We find that models of the blazar GLF that predict higher relative contributions of high-redshift blazars to the blazar collective spectrum result in emission that is more susceptible to attenuation by the EBL, and hence result in more prominent absorption features, allowing for better differentiation amongst EBL models. We thus demonstrate that observations of such an absorption feature will contain information regarding both the blazar GLF and the EBL, and we discuss tests for EBL models and the blazar GLF that will become possible with upcoming Fermi observations.Comment: 9 pages, 2 figures, emulateapj format, to be published in Astrophysical Journa

    Neutrino constraints on long-lived heavy dark sector particle decays in the Earth

    Full text link
    Recent theoretical work has explored dark matter accumulation in the Earth and its drift towards the center of the Earth that, for the current age of the Earth, does not necessarily result in a concentration of dark matter (χ\chi) in the Earth's core. We consider a scenario of long-lived (τχ1028\tau_\chi\sim 10^{28} s), super heavy (mχ=1071010m_\chi=10^7-10^{10} GeV) dark matter that decays via χντH\chi\to \nu_\tau H or χνμH\chi\to \nu_\mu H. We show that an IceCube-like detector over 10 years can constrain a dark matter density that mirrors the Earth's density or has a uniform density with density fraction ϵρ\epsilon_\rho combined with the partial decay width BχντHΓχB_{\chi\to \nu_\tau H}\Gamma_\chi in the range of (ϵρ/1010)BχντΓχ3×10293×1028(\epsilon_\rho/10^{-10}) B_{\chi\to \nu_\tau}\Gamma_\chi \lesssim 3\times 10^{-29}-3\times 10^{-28} s1^{-1}. For χνμH\chi\to \nu_\mu H, mχ=1081010m_\chi = 10^8-10^{10} GeV and Eμ>107E_\mu>10^7 GeV, the range of constraints is (ϵρ/1010)BχνμΓχ6×10291.4×1027(\epsilon_\rho/10^{-10}) B_{\chi\to \nu_\mu}\Gamma_\chi \lesssim 6\times 10^{-29}-1.4\times 10^{-27} s1^{-1}.Comment: 9 pages, 9 figure
    corecore