13 research outputs found

    Micro-Milling Tool Wear Monitoring via Nonlinear Cutting Force Model

    No full text
    Mechanistic cutting force model has the potential for monitoring micro-milling tool wear. However, the existing studies mainly consider the linear cutting force model, and they are incompetent to monitor the micro-milling tool wear which has a significant nonlinear effect on the cutting force due to the cutting-edge radius size effect. In this study, a nonlinear mechanistic cutting force model considering the comprehensive effect of cutting-edge radius and tool wear on the micro-milling force is constructed for micro-milling tool wear monitoring. A stepwise offline optimization approach is proposed to estimate the multiple parameters of the model. By minimizing the gap between the theoretical force expressed by the nonlinear model and the force measured in real-time, the tool wear condition is online monitored. Experiments show that, compared with the linear model, the nonlinear model has significantly improved cutting force prediction accuracy and tool wear monitoring accuracy

    Diagnosis and Prognosis of Degradation Process via Hidden Semi-Markov Model

    No full text

    Prediction of Nonlinear Micro-Milling Force with a Novel Minimum Uncut Chip Thickness Model

    No full text
    The minimum uncut chip thickness (MUCT), dividing the cutting zone into the shear region and the ploughing region, has a strong nonlinear effect on the cutting force of micro-milling. Determining the MUCT value is fundamental in order to predict the micro-milling force. In this study, based on the assumption that the normal shear force and the normal ploughing force are equivalent at the MUCT point, a novel analytical MUCT model considering the comprehensive effect of shear stress, friction angle, ploughing coefficient and cutting-edge radius is constructed to determine the MUCT. Nonlinear piecewise cutting force coefficient functions with the novel MUCT as the break point are constructed to represent the distribution of the shear/ploughing force under the effect of the minimum uncut chip thickness. By integrating the cutting force coefficient function, the nonlinear micro-milling force is predicted. Theoretical analysis shows that the nonlinear cutting force coefficient function embedded with the novel MUCT is absolutely integrable, making the micro-milling force model more stable and accurate than the conventional models. Moreover, by considering different factors in the MUCT model, the proposed micro-milling force model is more flexible than the traditional models. Micro-milling experiments under different cutting conditions have verified the efficiency and improvement of the proposed micro-milling force model
    corecore