14 research outputs found

    The Changes of Functional Connectivity Strength in Electroconvulsive Therapy for Depression: A Longitudinal Study

    Get PDF
    Electroconvulsive therapy (ECT) is an effective treatment for depression, but the mechanism of ECT for depression is still unclear. Recently, neuroimaging studies have reported that the prefrontal cortex, hippocampus, angular gyrus, insular and other brain regions are involved in the mechanism of ECT for depression, and these regions are highly overlapped with the location of brain hubs. Here, we try to explore the effects of ECT on the functional connectivity of brain hubs in depression patients. In current study, depression patients were assessed at three time points: prior to ECT, at the completion of ECT and about 1 month after the completion of ECT. At each time point, resting-state functional magnetic resonance imaging, assessment of clinical symptoms and cognition function were performed respectively, which was compared with 20 normal controls. Functional connectivity strength (FCS) was used to identify brain hubs. The results showed that FCS of left angular gyrus in depression patients significantly increased after ECT, accompanied by improved mood. The changed FCS in depression patients recovered obviously at 1 month after the completion of ECT. It suggested that ECT could modulate functional connectivity of left angular gyrus in depression patients

    Decreased Connection Between Reward Systems and Paralimbic Cortex in Depressive Patients

    Get PDF
    Despite decades of research on depression, the underlying pathophysiology of depression remains incompletely understood. Emerging evidence from task-based studies suggests that the abnormal reward-related processing contribute to the development of depression. It is unclear about the function pattern of reward-related circuit during resting state in depressive patients. In present study, seed-based functional connectivity was used to evaluate the functional pattern of reward-related circuit during resting state. Selected seeds were two key nodes in reward processing, medial orbitofrontal cortex (mOFC) and nucleus accumbens (NAcc). Fifty depressive patients and 57 healthy participants were included in present study. Clinical severity of participants was assessed with Hamilton depression scale and Hamilton anxiety scale. We found that compared with healthy participants, depressive patients showed decreased connectivity of right mOFC with left temporal pole (TP_L), right insula extending to superior temporal gyrus (INS_R/STG) and increased connectivity of right mOFC with left precuneus. Similarly, decreased connectivity of left mOFC with TP_L and increased connectivity with cuneus were found in depressive patients. There is also decreased connectivity of right NAcc with bilateral temporal pole, as well as decreased connectivity of left NAcc with INS_R/STG. In addition, the functional connectivity of right nucleus accumbens with right temporal pole (TP_R) was negatively correlated with clinical severity. Our results emphasize the role of communication deficits between reward systems and paralimbic cortex in the pathophysiology of depression

    Resting-State Neural-Activity Alterations in Subacute Aphasia after Stroke

    No full text
    Linguistic deficits are frequent symptoms among stroke survivors. The neural mechanism of post-stroke aphasia (PSA) was incompletely understood. Recently, resting-state functional magnetic resonance imaging (rs-fMRI) was widely used among several neuropsychological disorders. However, previous rs-fMRI studies of PSA were limited to very small sample size and the absence of reproducibility with different neuroimaging indexes. The present study performed comparisons with static and dynamic amplitude of low-frequency fluctuations (ALFF) and functional connectivity (FC) based on modest sample size (40 PSA and 37 healthy controls). Compared with controls, PSA showed significantly increased static ALFF predominantly in the bilateral supplementary motor area (SMA) and right hippocampus-parahippocampus (R HIP-ParaHip) and decreased static ALFF in right cerebellum. The increased dynamic ALFF in SMA and decreased dynamic ALFF in right cerebellum were also found in PSA. The static and dynamic ALFF in right cerebellum was positively correlated with spontaneous speech. The FC between the SMA and R HIP-ParaHip was significantly stronger in patients than controls and positively correlated with ALFF in bilateral SMA. In addition, the FC between the R HIP-ParaHip and the right temporal was also enhanced in patients and negatively correlated with repetition, naming, and comprehension score. These findings revealed consistently abnormal intrinsic neural activity in SMA and cerebellum, which may underlie linguistic deficits in PSA

    Neuroplasticity-Related Genes and Dopamine Receptors Associated with Regional Cortical Thickness Increase Following Electroconvulsive Therapy for Major Depressive Disorder

    No full text
    Electroconvulsive therapy (ECT) is an effective neuromodulatory therapy for major depressive disorder (MDD). Treatment is associated with regional changes in brain structure and function, indicating activation of neuroplastic processes. To investigate the underlying neurobiological mechanism of macroscopic reorganization following ECT, we longitudinally (before and after ECT in two centers) collected magnetic resonance images for 96 MDD patients. Similar patterns of cortical thickness (CT) changes following ECT were observed in two centers. These CT changes were spatially colocalized with a weighted combination of genes enriched for neuroplasticity-related ontology terms and pathways (e.g., synaptic pruning) as well as with a higher density of D2/3 dopamine receptors. A multiple linear regression model indicated that the region-specific gene expression and receptor density patterns explained 40% of the variance in CT changes after ECT. In conclusion, these findings suggested that dopamine signaling and neuroplasticity-related genes are associated with the ECT-induced morphological reorganization

    Hypoxia‐sensitive LINC01436 is regulated by E2F6 and acts as an oncogene by targeting miR‐30a‐3p in non‐small cell lung cancer

    No full text
    Dysregulation of long noncoding RNA (lncRNA) is known to be involved in numerous human diseases, including lung cancer. However, the precise biological functions of most lncRNA remain to be elucidated. Here, we identified a novel up‐regulated lncRNA, LINC01436 (RefSeq: NR_110419.1), in non‐small cell lung cancer (NSCLC). High expression of LINC01436 was significantly associated with poor overall survival. Notably, LINC01436 expression was transcriptionally repressed by E2F6 under normoxia, and the inhibitory effect was relieved in a hypoxic microenvironment. Gain‐ and loss‐of‐function studies revealed that LINC01436 acted as a proto‐oncogene by promoting lung cancer cell growth, migration and invasion in vitro. Xenograft tumor assays in nude mice confirmed that LINC01436 promoted tumor growth and metastasis in vivo. Mechanistically, LINC01436 exerted biological functions by acting as a microRNA (miR)‐30a‐3p sponge to regulate the expression of its target gene EPAS1. Our findings characterize LINC01436 as a new hypoxia‐sensitive lncRNA with oncogenic function in NSCLC, suggesting that LINC01436 may be a potential biomarker for prognosis and a potential target for treatment

    Direct auditory cortical input to the lateral periaqueductal gray controls sound-driven defensive behavior.

    No full text
    Threatening sounds can elicit a series of defensive behavioral reactions in animals for survival, but the underlying neural substrates are not fully understood. Here, we demonstrate a previously unexplored neural pathway in mice that projects directly from the auditory cortex (ACx) to the lateral periaqueductal gray (lPAG) and controls noise-evoked defensive behaviors. Electrophysiological recordings showed that the lPAG could be excited by a loud noise that induced an escape-like behavior. Trans-synaptic viral tracing showed that a great number of glutamatergic neurons, rather than GABAergic neurons, in the lPAG were directly innervated by those in layer V of the ACx. Activation of this pathway by optogenetic manipulations produced a behavior in mice that mimicked the noise-evoked escape, whereas inhibition of the pathway reduced this behavior. Therefore, our newly identified descending pathway is a novel neural substrate for noise-evoked escape and is involved in controlling the threat-related behavior
    corecore