7 research outputs found

    A Very Early-Branching Staphylococcus aureus Lineage Lacking the Carotenoid Pigment Staphyloxanthin

    Get PDF
    Here we discuss the evolution of the northern Australian Staphylococcus aureus isolate MSHR1132 genome. MSHR1132 belongs to the divergent clonal complex 75 lineage. The average nucleotide divergence between orthologous genes in MSHR1132 and typical S. aureus is approximately sevenfold greater than the maximum divergence observed in this species to date. MSHR1132 has a small accessory genome, which includes the well-characterized genomic islands, νSAα and νSaβ, suggesting that these elements were acquired well before the expansion of the typical S. aureus population. Other mobile elements show mosaic structure (the prophage φSa3) or evidence of recent acquisition from a typical S. aureus lineage (SCCmec, ICE6013 and plasmid pMSHR1132). There are two differences in gene repertoire compared with typical S. aureus that may be significant clues as to the genetic basis underlying the successful emergence of S. aureus as a pathogen. First, MSHR1132 lacks the genes for production of staphyloxanthin, the carotenoid pigment that confers upon S. aureus its characteristic golden color and protects against oxidative stress. The lack of pigment was demonstrated in 126 of 126 CC75 isolates. Second, a mobile clustered regularly interspaced short palindromic repeat (CRISPR) element is inserted into orfX of MSHR1132. Although common in other staphylococcal species, these elements are very rare within S. aureus and may impact accessory genome acquisition. The CRISPR spacer sequences reveal a history of attempted invasion by known S. aureus mobile elements. There is a case for the creation of a new taxon to accommodate this and related isolates

    Biomedical studies on temporal bones of the first multi-channel cochlear implant patient at the University of Melbourne

    No full text
    Objective: To analyse the temporal bones and implant of the first University of Melbourne’s (UOM) patient (MC-1) to receive the multi-channel cochlear prosthesis.Methods: The left cochlea was implanted with the prototype multi-channel cochlear prosthesis on 1 August 1978, and the Cochlear versions CI-22 and CI-24 on 22 June 1983 and 10 November 1998, respectively. MC-1 died in 2007.Results: Plain X-rays of the temporal bones showed that after the CI-22 had been explanted seven electrode bands remained in situ. Micro-CT scans also revealed a partially united fracture transecting the left implanted and right control cochleae. Histology indicated a total loss of the organ of Corti on both sides, and a tear of the left basilar membrane. In addition, there was a dense fibrous capsule with heterotopic bone surrounding one proximal band of the CI-22 array that restricted its removal. This pathology was associated with dark particulate material within macrophages, probably due to the release of platinum from the electrode bands. Scanning electron microscopy (SEM) showed possible corrosion of platinum and surface roughening. Three-dimensional reconstruction of the cochlear histology demonstrated the position of the electrode tracts (C1-22 and CI-24) in relation to the spiral ganglion, which showed 85–90% loss of ganglion cells.Discussion and conclusions: This study confirms our first histopathological findings that our first free-fitting banded electrode array produced moderate trauma to the cochlea when inserted around the scala tympani of the basal turn. The difficulty in extraction was most likely due to one band being surrounded by an unusually large amount of fibrous tissue and bone, with an electrode band caught due to surface irregularities. Some surface corrosion and a small degree of platinum deposition in the tissue may also help explain the outcome for this long-term cochlear implantation.</p
    corecore