188 research outputs found
Bell Correlations and the Common Future
Reichenbach's principle states that in a causal structure, correlations of
classical information can stem from a common cause in the common past or a
direct influence from one of the events in correlation to the other. The
difficulty of explaining Bell correlations through a mechanism in that spirit
can be read as questioning either the principle or even its basis: causality.
In the former case, the principle can be replaced by its quantum version,
accepting as a common cause an entangled state, leaving the phenomenon as
mysterious as ever on the classical level (on which, after all, it occurs). If,
more radically, the causal structure is questioned in principle, closed
space-time curves may become possible that, as is argued in the present note,
can give rise to non-local correlations if to-be-correlated pieces of classical
information meet in the common future --- which they need to if the correlation
is to be detected in the first place. The result is a view resembling Brassard
and Raymond-Robichaud's parallel-lives variant of Hermann's and Everett's
relative-state formalism, avoiding "multiple realities."Comment: 8 pages, 5 figure
GAMEC – a new intensive protocol for untreated poor prognosis and relapsed or refractory germ cell tumours
There is no consensus as to the management of untreated poor prognosis or relapsed/refractory germ cell tumours. We have studied an intensive cisplatin-based regimen that incorporates high-dose methotrexate (HD MTX) and actinomycin-D and etoposide every 14 days (GAMEC). Sixty-two patients were enrolled in a phase 2 study including 27 who were untreated (IGCCCG, poor prognosis) and 35 with progression despite conventional platinum based chemotherapy. The pharmacokinetics of the drugs were correlated with standard outcome measures. Twenty of the untreated patients were progression free following GAMEC and appropriate surgery, as were 18 individuals in the pretreated group. None of the established prognostic factors for therapy for pretreated patients could identify a poor-prognosis group. Five out of nine late relapses to prior chemotherapy were progression free following GAMEC and appropriate surgery. All patients had at least one episode of febrile neutropenia and there were five (8%) treatment-related deaths. PK values were not predictive of efficacy or toxicity, although the dose intensity in the pretreated group of patients, especially of HD MTX, was significantly correlated with progression-free survival (PFS). GAMEC is a novel intensive regimen for this group of patients producing encouraging responses, although with significant toxicity. For those in whom it fails, further therapy is still possible with durable responses being seen
Hydrothermal Stamp on the Oceans
The composition of the oceans is altered by hydrothermal circulation. These chemical factories sustain microbial life, which in turn alters the chemistry of the fuids that enter the ocean. A decade of research details this complex interchange
The quest for the solar g modes
Solar gravity modes (or g modes) -- oscillations of the solar interior for
which buoyancy acts as the restoring force -- have the potential to provide
unprecedented inference on the structure and dynamics of the solar core,
inference that is not possible with the well observed acoustic modes (or p
modes). The high amplitude of the g-mode eigenfunctions in the core and the
evanesence of the modes in the convection zone make the modes particularly
sensitive to the physical and dynamical conditions in the core. Owing to the
existence of the convection zone, the g modes have very low amplitudes at
photospheric levels, which makes the modes extremely hard to detect. In this
paper, we review the current state of play regarding attempts to detect g
modes. We review the theory of g modes, including theoretical estimation of the
g-mode frequencies, amplitudes and damping rates. Then we go on to discuss the
techniques that have been used to try to detect g modes. We review results in
the literature, and finish by looking to the future, and the potential advances
that can be made -- from both data and data-analysis perspectives -- to give
unambiguous detections of individual g modes. The review ends by concluding
that, at the time of writing, there is indeed a consensus amongst the authors
that there is currently no undisputed detection of solar g modes.Comment: 71 pages, 18 figures, accepted by Astronomy and Astrophysics Revie
Impact of female age and male infertility on ovarian reserve markers to predict outcome of assisted reproduction technology cycles
<p>Abstract</p> <p>Background</p> <p>This study was designed to assess the capability of ovarian reserve markers, including baseline FSH levels, baseline anti-Müllerian hormone (AMH) levels, and antral follicle count (AFC), as predictors of live births during IVF cycles, especially for infertile couples with advanced maternal age and/or male factors.</p> <p>Methods</p> <p>A prospective cohort of 336 first IVF/ICSI cycles undergoing a long protocol with GnRH agonist was investigated. Patients with endocrine disorders or unilateral ovaries were excluded.</p> <p>Results</p> <p>Among the ovarian reserve tests, AMH and age had a greater area under the receiving operating characteristic curve than FSH in predicting live births. Furthermore, AMH and age were the sole predictive factors of live births for women greater than or equal to 35 years of age; while AMH was the major determinant of live births for infertile couples with absence of male factors by multivariate logistic regression analysis. However, all the studied ovarain reserve tests were not preditive of live births for women < 35 years of age or infertile couples with male factors.</p> <p>Conclusion</p> <p>The serum AMH levels were prognostic for pregnancy outcome for infertile couples with advanced female age or absence of male factors. The predictive capability of ovarian reserve tests is clearly influenced by the etiology of infertility.</p
Highlight Talk: Recent Results from VERITAS
VERITAS is a state-of-the-art ground-based gamma-ray observatory that operates in the very high-energy (VHE) region of 100 GeV to 50 TeV. The observatory consists of an array of four 12m-diameter imaging atmospheric Cherenkov telescopes located in southern Arizona, USA. The four-telescope array has been fully operational since September 2007, and over the last two years, VERITAS has been operating with high efficiency and with excellent performance. This talk summarizes the recent results from VERITAS, including the discovery of eight new VHE gamma-ray sources
Determinants of Leukocyte Margination in Rectangular Microchannels
Microfabrication of polydimethylsiloxane (PDMS) devices has provided a new set of tools for studying fluid dynamics of blood at the scale of real microvessels. However, we are only starting to understand the power and limitations of this technology. To determine the applicability of PDMS microchannels for blood flow analysis, we studied white blood cell (WBC) margination in channels of various geometries and blood compositions. We found that WBCs prefer to marginate downstream of sudden expansions, and that red blood cell (RBC) aggregation facilitates the process. In contrast to tubes, WBC margination was restricted to the sidewalls in our low aspect ratio, pseudo-2D rectangular channels and consequently, margination efficiencies of more than 95% were achieved in a variety of channel geometries. In these pseudo-2D channels blood rheology and cell integrity were preserved over a range of flow rates, with the upper range limited by the shear in the vertical direction. We conclude that, with certain limitations, rectangular PDMS microfluidic channels are useful tools for quantitative studies of blood rheology
Search for Sterile Neutrinos Mixing with Muon Neutrinos in MINOS
We report results of a search for oscillations involving a light sterile neutrino over distances of 1.04 and 735 km in a νμ-dominated beam with a peak energy of 3 GeV. The data, from an exposure of 10.56 × 10^20 protons on target, are analyzed using a phenomenological model with one sterile neutrino. We constrain the mixing parameters θ24 and Δm41^2 and set limits on parameters of the four-dimensional Pontecorvo-Maki- Nakagawa-Sakata matrix, |Uμ4|2 and |Uτ4|2, under the assumption that mixing between νe and νs is negligible (|Ue4|^2 = 0). No evidence for νμ → νs transitions is found and we set a world-leading limit on θ24 for values of Δm41^2 ≲ 1 eV^2
Measurements of atmospheric neutrinos and antineutrinos in the MINOS far detector
This paper reports measurements of atmospheric neutrino and antineutrino interactions in the MINOS Far Detector, based on 2553 live-days (37.9 kton-years) of data. A total of 2072 candidate events are observed. These are separated into 905 contained-vertex muons and 466 neutrino-induced rock-muons, both produced by charged-current v_µ and v¯_µ interactions, and 701 contained-vertex showers, composed mainly of charged-current v_e and v¯_e interactions and neutral-current interactions. The curvature of muon tracks in the magnetic field of the MINOS Far Detector is used to select separate samples of v_µ and v¯_µ events. The observed ration of v¯_µ to v_µ events is compared with the Monte Carlo (MC) simulation, giving a double ration of (R^(data)_(v¯/v))/(R^(MC)_(v¯/v)) = 1.03 ± 0.08(stat) ± 0.08(syst). The v_µ and v¯_µ data are separated into bins of L/E resolution, based on the reconstructed energy and direction of each event, and a maximum likelihood fit to the observed L/E distributions is used to determine the atmospheric neutrino oscillation parameters. This fit returns 90% confidence limits of |Δm^2| = (1.9 ± 0.4) x 10^(-3) eV^2 and sin^(2)2θ > 0.86. The fit is extended to incorporate separate v_µ and v¯_µ oscillation parameters, returning 90% confidence limits of |Δm^2|-|Δm¯^2| = 0.6^(2.4)_(-0.8) x 10^(-3) eV^2 on the difference between the squared-mass splittings for neutrinos and antineutrinos
- …