12 research outputs found

    Generating applicable environmental knowledge among farmers: experiences from two regions in Poland

    Get PDF
    Raising environmental awareness among farmers is the key to successfully reaching environmental goals. The present study assessed the knowledge development process and the raising of environmental awareness among 30 farmers from Poland exposed to four approaches aimed to reduce phosphorus (P) and nitrogen (N) losses to water. The farmers were interviewed with open-ended questions on-farm both before and after the project intervention. As hoped, the farmers attempted to adjust their farm practices to the European Union regulations, which are in some cases supported by subsidies. As a complement, the project offered tools for system-thinking based on farm data and support from agricultural advisors: a) a survey of plant-available P, potassium (K), magnesium (Mg), and soil pH, resulting in soil maps; b) assessment of nitrogen leaching risks from individual fields; c) compilation of a farm-gate balance. Farmers were positive to soil surveys and maps, but had limited understanding of the nutrient balance concept and calculations. They generally relied on their own experiences regarding fertilization rather than on calculated farm nutrient balances and leaching risks. Farmers' understanding and willingness to adopt new approaches to improve nutrient efficiency and reduce negative environmental impacts are discussed

    Knowledge co-production in the Helge å catchment: a comparative analysis

    Get PDF
    Addressing sustainability challenges in landscape management requires processes for co-producing usable knowledge together with those who will use that knowledge. Participatory futures methods are powerful tools for attaining such knowledge. The applications of such methods are diverse and understanding the intricacies of the knowledge co-production process is important to further develop these research practices. To improve participatory futures methods and contribute to systematic and critical reflections on methodology, we present a comparative analysis of four research projects that applied participatory futures methods in the same study area. Conducted between 2011 and 2020, these projects aimed to co-produce knowledge about the future provision of ecosystem services in the Helge å catchment area in southern Sweden. For structuring the post-hoc, self-reflexive analysis, we developed a framework dividing the knowledge co-production process into three dimensions: settings, synthesis and diffusion. We based the analysis on documentation from the projects, a two-step questionnaire to each research team, a workshop with co-authors and interviews with key participants. The comparison highlights steps in project decision-making, explicit and implicit assumptions in our respective approaches and how these assumptions informed process design in the projects. Our detailed description of the four knowledge co-production processes points to the importance of flexibility in research design, but also the necessity for researchers and other participants to adapt as the process unfolds

    Future agriculture with minimized phosphorus losses to waters: research needs and direction

    Get PDF
    The series of papers in this issue of AMBIO represent technical presentations made at the 7th International Phosphorus Workshop (IPW7), held in September, 2013 in Uppsala, Sweden. At that meeting, the 150 delegates were involved in round table discussions on major, predetermined themes facing the management of agricultural phosphorus (P) for optimum production goals with minimal water quality impairment. The six themes were (1) P management in a changing world; (2) transport pathways of P from soil to water; (3) monitoring, modeling, and communication; (4) importance of manure and agricultural production systems for P management; (5) identification of appropriate mitigation measures for reduction of P loss; and (6) implementation of mitigation strategies to reduce P loss. This paper details the major challenges and research needs that were identified for each theme and identifies a future roadmap for catchment management that cost-effectively minimizes P loss from agricultural activities

    Antibiotics and antibiotic-resistant bacteria in waters associated with a hospital in Ujjain, India

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Concerns have been raised about the public health implications of the presence of antibiotic residues in the aquatic environment and their effect on the development of bacterial resistance. While there is information on antibiotic residue levels in hospital effluent from some other countries, information on antibiotic residue levels in effluent from Indian hospitals is not available. Also, concurrent studies on antibiotic prescription quantity in a hospital and antibiotic residue levels and resistant bacteria in the effluent of the same hospital are few. Therefore, we quantified antibiotic residues in waters associated with a hospital in India and assessed their association, if any, with quantities of antibiotic prescribed in the hospital and the susceptibility of <it>Escherichia coli </it>found in the hospital effluent.</p> <p>Methods</p> <p>This cross-sectional study was conducted in a teaching hospital outside the city of Ujjain in India. Seven antibiotics - amoxicillin, ceftriaxone, amikacin, ofloxacin, ciprofloxacin, norfloxacin and levofloxacin - were selected. Prescribed quantities were obtained from hospital records. The samples of the hospital associated water were analysed for the above mentioned antibiotics using well developed and validated liquid chromatography/tandem mass spectrometry technique after selectively isolating the analytes from the matrix using solid phase extraction. <it>Escherichia coli </it>isolates from these waters were tested for antibiotic susceptibility, by standard Kirby Bauer disc diffusion method using Clinical and Laboratory Standard Institute breakpoints.</p> <p>Results</p> <p>Ciprofloxacin was the highest prescribed antibiotic in the hospital and its residue levels in the hospital wastewater were also the highest. In samples of the municipal water supply and the groundwater, no antibiotics were detected. There was a positive correlation between the quantity of antibiotics prescribed in the hospital and antibiotic residue levels in the hospital wastewater. Wastewater samples collected in the afternoon contained both a higher number and higher levels of antibiotics compared to samples collected in the morning hours. No amikacin was found in the wastewater, but <it>E.coli </it>isolates from all wastewater samples were resistant to amikacin. Although ciprofloxacin was the most prevalent antibiotic detected in the wastewater, <it>E.coli </it>was not resistant to it.</p> <p>Conclusions</p> <p>Antibiotics are entering the aquatic environment of countries like India through hospital effluent. In-depth studies are needed to establish the correlation, if any, between the quantities of antibiotics prescribed in hospitals and the levels of antibiotic residues found in hospital effluent. Further, the effect of this on the development of bacterial resistance in the environment and its subsequent public health impact need thorough assessment.</p

    A Review of Nutrient Losses to Waters From Soil- and Ground-Based Urban Agriculture—More Nutrient Balances Than Measurements

    No full text
    Urban agriculture has a high potential to contribute to local circular economies, for instance by using nitrogen, phosphorus, and potassium in city organic waste streams as fertilizer inputs. However, inefficient use of waste-derived fertilizers could contribute to local water quality impairment related to nitrogen and phosphorus losses. Organic waste derived fertilizers are particularly challenging from a nutrient stoichiometry perspective, making over- and under-application of a particular nutrient likely. Where, and under what conditions, urban agriculture acts as a net positive for a circular nutrient economy vs. a nutrient water quality risk remains unclear. Here we review empirical peer-reviewed studies (2000–2021) on soil- and ground-based urban agriculture with a stated concern for nutrient losses to water. Of the 20 publications retained and reviewed (out of 241 screened), only seven measured losses to waters. There were four experimental studies, of which three measured nutrient leachate losses under different garden management practices. Of the 16 studies done in real-world conditions, only four quantified losses to water as leachate; average losses spanned 0.005 to 6.5 kg ha−1 for phosphorus, and 0.05 to 140 kg ha−1 for nitrogen. 13 of the 16 non-experimental studies provided data on nutrient inputs and harvested crop outputs, which could be used to calculate garden nutrient balances—an indicator of nutrient use efficiency. Although the value ranges were large, most studied gardens showed nutrient surpluses (inputs &gt; crop harvest) for nitrogen and phosphorus (but not potassium); these surpluses were identified as a risk for losses to water. Contextual factors such as different access to fertilizers and knowledge, along with regulations and environmental factors can help explain the wide range of balance values and nutrient losses observed. Although a large surplus of inputs was often linked to increased leachate losses, it was not always the case in the limited number of studies we identified. Our review suggests that more field studies that measure losses to waters, and document contextual factors, are needed to determine how urban agriculture may contribute to a sustainable circular economy for all three nutrients without nutrient-related water quality impairment.Funding: Swedish Council for Sustainable Development [2019-01890]</p

    Optimizing transport to maximize nutrient recycling and green energy recovery

    No full text
    A circular biobased economy must be able to sustainably manage multiple resources simultaneously. Nutrient (nitrogen, phosphorus, and potassium) recycling and renewable energy production (biogas) can be compatible practices but require substantial transport of heavy organic waste. We combine a spatial optimization model and Life Cycle Assessment (LCA) to explore how Sweden could maximize its use of excreta resources. We use 10×10 km2 resolution data on the location of animal and human excreta and crop demand and model both optimal biogas plant locations and transport of nutrients to and from these plants. Each type of biogas plant (given 4 realistic mixes of excreta) is then evaluated for global warming potential, primary energy use and financial resource costs. Moving excreta through biogas plants, as opposed to simply reapplying on fields, to meet crop nutrient demands comes at a similar cost but the climate and primary energy savings are substantial. As much as 91% of phosphorus and 44% of nitrogen crop demand could be met via optimally transported excreta and the country would avoid about 1 450 kt of CO2-eq, save 3.6 TWh (13 000 tera-joules) of primary energy, and save 90 million euros per year. Substituting mineral fertilizers with recycled nutrients results in savings across all indicators, but the added energy and avoided greenhouse gas emissions associated with biogas production make a large difference in the attractiveness of nutrient recycling. Although the numeric values are theoretical, our results indicate that carefully coordinated and supported biogas production could help maximize multi-resource benefits

    National Large-Scale Wetland Creation in Agricultural Areas—Potential versus Realized Effects on Nutrient Transports

    No full text
    During 2007–2013, the Swedish Board of Agriculture granted support within a national program to about 1000 wetlands, corresponding to a 5300-hectare wetland area, with the dual goal to remove nutrients from water and to improve biodiversity in agricultural landscapes. The aim of the present study was to compare the effects on nutrient transports that are realized within the national program to what could be obtained with the same area of wetlands if location and design of wetlands were optimized. In single, highly nutrient-loaded wetlands, a removal of around 1000 kg nitrogen and 100 kg phosphorus per hectare wetland area and year was estimated from monitoring data. Statistical models were developed to estimate the overall nutrient removal effects of wetlands created within the national program. Depending on model, the effect of the national program as a whole was estimated to between 27 and 38 kg nitrogen and between 2.7 and 4.5 kg phosphorus per hectare created wetland area and year. Comparison of what is achieved in individual wetlands to what was achieved in the national program indicates that nutrient removal effects could be increased substantially in future wetland programs by emphasising location and design of wetlands

    Optimizing Nutrient Recycling From Excreta in Sweden and Pakistan : Higher Spatial Resolution Makes Transportation More Attractive

    No full text
    Recycling essential plant nutrients like nitrogen (N), phosphorus (P), and potassium (K) from organic waste such as human and animal excreta will be an essential part of sustainable food systems and a circular economy. However, transportation is often cited as a major barrier to increased recycling as organic waste is heavy and bulky, and distances between areas of abundant waste may be far from areas with a need for fertilizers. We investigated the effect of increased input data spatial resolution to an optimization model on the weight, distance, and spatial patterns of transport. The model was run in Sweden and in Pakistan to examine cost-effectiveness of transporting excess excreta to areas of crop need after local recycling. Increasing the resolution of input data from political boundaries (municipalities and districts) to 0.083 decimal grids increased the amount of N requiring transport by 12% in Pakistan and increased P requiring transport by 14% in Sweden. The average distance decreased by 67% (to 44 km) in Pakistan but increased by 1 km in Sweden. Further increasing the resolution to 5 km grids in Sweden decreased the average transportation distance by 9 km (down to 123 km). In both countries, increasing resolution also decreased the number of long-distance heavy transports, and as such costs did not increase as much as total distance and weight transported. Ultimately, transportation in Pakistan seemed financially beneficial: the cost of transport only represented 13% of the NPK fertilizer value transported, and total recycling could even cover 78% of additional fertilizer purchases required. In Sweden, the cost of transporting excreta did not seem cost effective without valuing other potential benefits of increased recycling: costs were three times higher than the fertilizer value transported in excreta at the 5 km resolution. In summary, increasing input data resolution created a more realistic picture of recycling needs. This also highlighted more favorable cost to fertilizer value ratios which could make it easier to move forward with industry and government partners to facilitate productive recycling. Our analysis shows that in both countries increased recycling can result in better spatial nutrient balances
    corecore