56 research outputs found

    Do provisioning ecosystem services change along gradients of increasing agricultural production?

    Get PDF
    Context: Increasing agricultural production shapes the flow of ecosystem services (ES), including provisioning services that support the livelihoods and nutrition of people in tropical developing countries. Although our broad understanding of the social-ecological consequences of agricultural intensification is growing, how it impacts provisioning ES is still unknown. Objectives: We examined the household use of provisioning ES across a gradient of increasing agricultural production in seven tropical countries (Bangladesh, Burkina Faso, Cameroon, Ethiopia, Indonesia, Nicaragua and Zambia). We answered two overarching questions: (1) does the use of provisioning ES differ along gradients of agriculture production ranging from zones of subsistence to moderate and to high agriculture production? and (2) are there synergies and/or trade-offs within and among groups of ES within these zones? Methods: Using structured surveys, we asked 1900 households about their assets, livestock, crops, and collection of forest products. These questions allowed us to assess the number of provisioning ES households used, and whether the ES used are functionally substitutable (i.e., used similarly for nutrition, material, and energy). Finally, we explored synergies and trade-offs among household use of provisioning ES. Results: As agricultural production increased, provisioning ES declined both in total number and in different functional groups used. We found more severe decreases in ES for relatively poorer households. Within the functional groups of ES, synergistic relationships were more often found than trade-offs in all zones, including significant synergies among livestock products (dairy, eggs, meat) and fruits. Conclusions: Considering landscape context provides opportunities to enhance synergies among provisioning services for households, supporting resilient food systems and human well-being

    A methodological approach for assessing cross-site landscape change: understanding socio-ecological systems

    Get PDF
    The expansion of agriculture has resulted in large-scale habitat loss, the fragmentation of forests, significant losses in biological diversity and negative impacts on many ecosystem services. In this paper, we highlight the Agrarian Change Project, a multi-disciplinary research initiative, that applies detailed socio-ecological methodologies in multi-functional landscapes, and assess the subsequent implications for conservation, livelihoods and food security. Specifically, the research focuses on land use impacts in locations which exhibit various combinations of agricultural modification/change across a forest transition gradient in six tropical landscapes, in Zambia, Burkina Faso, Cameroon, Ethiopia, Indonesia and Bangladesh. These methods include integrated assessments of the perceptions of ecosystem service provision, tree cover loss and gain, relative poverty, diets and agricultural patterns of change. Although numerous surveys on rural livelihoods are undertaken each year, often at great cost, many are hampered by weaknesses in methods and thus may not reflect rural realities. We attempt to highlight how integrating broader socio-ecological methods can be used to fill in those gaps and ensure such realities are indeed captured. Early findings suggest that the transition from a forested landscape to a more agrarian dominated system does not necessarily result in better livelihood outcomes and there may be unintended consequences of forest and tree cover removal. These include the loss of access to grazing land, loss of dietary diversity and the loss of ecosystem services/forest products

    Unpacking ecosystem service bundles: towards predictive mapping of synergies and trade-offs between ecosystem services

    Get PDF
    Multiple ecosystem services (ES) can respond similarly to social and ecological factors to form bundles. Identifying key social-ecological variables and understanding how they co-vary to produce these consistent sets of ES may ultimately allow the prediction and modelling of ES bundles, and thus, help us understand critical synergies and trade-offs across landscapes. Such an understanding is essential for informing better management of multi-functional landscapes and minimising costly trade-offs. However, the relative importance of different social and biophysical drivers of ES bundles in different types of social-ecological systems remains unclear. As such, a bottom-up understanding of the determinants of ES bundles is a critical research gap in ES and sustainability science. Here, we evaluate the current methods used in ES bundle science and synthesize these into four steps that capture the plurality of methods used to examine predictors of ES bundles. We then apply these four steps to a cross-study comparison (North and South French Alps) of relationships between social-ecological variables and ES bundles, as it is widely advocated that cross-study comparisons are necessary for achieving a general understanding of predictors of ES associations. We use the results of this case study to assess the strengths and limitations of current approaches for understanding distributions of ES bundles. We conclude that inconsistency of spatial scale remains the primary barrier for understanding and predicting ES bundles. We suggest a hypothesis-driven approach is required to predict relationships between ES, and we outline the research required for such an understanding to emerge

    Long-term mapping of ecosystem services in a river-floodplain system

    No full text
    Humans derive a wide range of benefits from ecosystems, known as ecosystem services (ES). At the nexus of land and water, floodplains are particularly important for providing ES. Recently, problematic declines in ES have motivated research to better understand their spatial distributions. However, the temporal dynamics of critically important floodplain-specific ES remain poorly understood. These spatial and temporal dynamics as well as trade-offs that occur when management enhances one ES at the expense of others are particularly germane as a warming climate alters river flows. Landscape history is foundational to elucidating these dynamics. Here, I explore the importance of landscape history for understanding the historical, contemporary, and future distributions of ES in the Wenatchee watershed, central Washington State. Using several widely-used datasets in novel ways, my dissertation has five primary objectives (1) quantify the relative importance of different landscape positions for frontier settlers, (2) map change in ES from 1949-2006 using high-resolution imagery, (3) enhance understanding of ES interactions by incorporating change in ES over time, (4) explore the spatial distribution of floodplain-specific ES, and (5) conceptualize shifts in ES under future climates. I found riparian zones and floodplains were disproportionately important for frontier settlement, setting the stage to explore floodplain-specific ES in more detail. ES were dynamic from 1949-2006, largely driven by increasing urbanization and forest densification. Next, I showed how history can provide important insights into ES interactions. Finally, I also found floodplain ES varied considerably with floodplain position. Analyses over broad time frames and at fine spatial scales greatly enhance our understanding of ES dynamics, highlighting the need for long-term monitoring for ES, especially as ES continue to interact under future climates.Forestry, Faculty ofGraduat

    The long shot

    No full text
    96 p. : il; 23 c

    The silver coins

    No full text
    96 p. : il.; 24 c

    Ecosystem service trade-offs and synergies misunderstood without landscape history

    No full text
    Dramatic changes in ecosystem services have motivated recent work characterizing their interactions, including identifying trade-offs and synergies. Although time is arguably implicit in these ideas of trade-offs and synergies (e.g., temporal dynamics or changes in ecosystem services), such interactions are routinely inferred based on the spatial relationships among ecosystem services alone (e.g., spatial concordance of ecosystem services indicates synergies, whereas incongruence signifies trade-offs). The limitations of this approach have not been fully explored. We quantified ecosystem service interactions using correlations among contemporary ecosystem services and compared these results to those derived by incorporating change in ecosystem services from an earlier decade. To document change over ~60 years in an urbanizing floodplain, we used aerial photography to map multiple floodplain-associated ecosystem services. Our results demonstrate how incorporating landscape baselines can influence measured synergies and trade-offs. Spatial correlations among contemporary ecosystem services missed several interactions that were detected when using prior baseline ecosystem services. Ignoring the history of ecosystem services and their change over time may result in missed opportunities to foster their synergies and lead to unnecessary trade-offs. Efforts to incorporate ecosystem services into land management should include long-term monitoring and baseline reconstructions of ecosystem services
    corecore