264 research outputs found

    Interference of kallikrein 1b26 (klk1b26) translation by microRNA specifically expressed in female mouse submandibular glands: an additional mechanism for sexual dimorphism of klk1b26 protein in the glands

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mouse kallikrein 1b26 (klk1b26) protein is more abundant in male submandibular glands (SMGs) than in female ones. This sexual dimorphism has been thought to be due to increased mRNA synthesis stimulated by androgen. However, the klk1b26 protein level in female SMG is far less than that expected from the mRNA level, suggesting an additional mechanism for down-regulation of klk1b26 expression in female SMGs.</p> <p>Methods</p> <p>We examined the effects of small non-coding RNAs in mouse SMGs on <it>in vitro </it>translation of klk1b26 using a reticulocyte lysate system and reverse transcription (RT)-PCR for klk1b26 mRNA. Statistical analyses were performed with a computer package (Microsoft Excel).</p> <p>Results</p> <p>The microRNA (miRNA) preparation from female SMGs, but not male SMGs, interfered with the <it>in vitro </it>translation of the klk1b26 protein and inhibited the RT-PCR for klk1b26 mRNA with forward primers targeting its 5'-terminal region (between the 15th and 40th nucleotide from the 5'-terminal). The miRNA preparation from castrated mouse SMGs showed the inhibitory effect on the klk1b26 translation, but that from a 5α-dihydrotestosterone-treated female mouse SMGs did not. Synthetic miRNAs (miR-325 and miR-1497a), which have partial complementarity with klk1b26 mRNA at its 5'-terminal region (15th to 40th nucleotide position from the 5'-terminal), also interfered with the <it>in vitro </it>klk1b26 translation. When the female miRNA preparation was incubated with a 30-nucleotide-long single-strand oligoDNA (named [15th-44th]ssDNA, whose sequence corresponded to the 15th to 44th position from the 5'-terminal of klk1b26 mRNA) prior to the addition into the <it>in vitro </it>translation system, the inhibitory effect of the miRNA preparation on klk1b26 translation disappeared, while [15th-44th]ssDNA itself had no effect on the translation. Preincubation of the miRNA preparation with another single-strand DNA ([169th-198th]ssDNA, whose sequence corresponded with 169th to 198th position of klk1b26 mRNA) did not show the inhibitory effect.</p> <p>Conclusions</p> <p>The small non-coding RNA, most probably miRNA, specifically expressed in female mouse SMGs interfered with klk1b26 protein synthesis in the <it>in vitro </it>translation system. Therefore sexual dimorphism observed in klk1b26 expression in mouse SMGs is due at least in part to the female-specific small non-coding RNA in SMGs.</p

    Proto-oncogene c-jun and c-fos messenger RNAs increase in the liver of carnitine-deficient juvenile visceral steatosis (jvs) mice

    Get PDF
    AbstractWe determined the mRNA levels of c-jun and c-fos in the liver of C3H-H-2° jvs mice. Both were higher in jvs mice than in normal mice. The level of c-jun mRNA increased gradually after birth, but in the control mice there was almost no change. In addition, α-fetoprotein and aldolase A mRNA levels were also higher than in normal littermates. These results suggest that the pattern of the gene expression in jvs mice partly resembles the one that occurs in undifferentiated hepatocytes and/or hepatocellular carcinoma

    Tunneling Effect Based on N elson's Quantum Stochastic Process Approach -Estimation of Tunneling Time-

    Get PDF
    The problem of tunneling time associated with the passage of a particle through a tunneling barrier seems very simple. But it turns out to be very deceptive by the lack of a time operator and there is no clear consensus about simple expression for the tunneling time. In this paper we evaluate the tunneling time based on Nelson's quantum stochastic process approach. This approach describes the motion of a particle by a stochastic differentia1 equation and gives a sample paths. The ensemble of the paths reproduce the predictions given by ordinary quantum mechanics in an average. Each sample path has its own time dependent history, which enables us make a virtual quantum experiment. We formulate the tunneling time based on this approach and compare it with the Larmor time estimated from an experimental measurement of Larmor precession angles of tunneling neutrons

    An intronic microRNA silences genes that are functionally antagonistic to its host gene

    Get PDF
    MicroRNAs (miRNAs) are short noncoding RNAs that down-regulate gene expression by silencing specific target mRNAs. While many miRNAs are transcribed from their own genes, nearly half map within introns of ‘host’ genes, the significance of which remains unclear. We report that transcriptional activation of apoptosis-associated tyrosine kinase (AATK), essential for neuronal differentiation, also generates miR-338 from an AATK gene intron that silences a family of mRNAs whose protein products are negative regulators of neuronal differentiation. We conclude that an intronic miRNA, transcribed together with the host gene mRNA, may serve the interest of its host gene by silencing a cohort of genes that are functionally antagonistic to the host gene itself

    Expression of midkine in the early stage of carcinogenesis in human colorectal cancer

    Get PDF
    It has been suggested that a heparin-binding growth factor, midkine (MK), plays an important role incarcinogenesis because of its frequent overexpression in various malignant tumours. To clarify whether or not MK contributes to theearly stage of carcinogenesis, we examined the status of MK mRNA in 20 adenomas with moderate- and severe-grade dysplasia, 28carcinomas and 28 corresponding normal tissues, by means of Northern blotting. The MK expression level was significantly moreelevated in adenomas than in normal tissues P< 0.001, unpaired Student's t -test). A difference wasalso observed between carcinomas and the corresponding normal tissues P< 0.04, paired Student's t-test). Moreover, MK immunostaining was positive in the adenomas with moderate- and severe-grade dysplasia and in the carcinomas,but not in mild-grade dysplasia or in normal tissues. These findings were in line with those on Western blotting. In three patientswith both adenomas with moderate- or severe-grade dysplasia and carcinomas, elevated MK expression was observed in the neoplasticlesions. This is the first report of the association of elevated MK expression with the early stage of carcinogenesis in humans. © 1999 Cancer Research Campaig

    A Potential Regulatory Role for Intronic microRNA-338-3p for Its Host Gene Encoding Apoptosis-Associated Tyrosine Kinase

    Get PDF
    MicroRNAs (miRNAs) are important gene regulators that are abundantly expressed in both the developing and adult mammalian brain. These non-coding gene transcripts are involved in post-transcriptional regulatory processes by binding to specific target mRNAs. Approximately one third of known miRNA genes are located within intronic regions of protein coding and non-coding regions, and previous studies have suggested a role for intronic miRNAs as negative feedback regulators of their host genes. In the present study, we monitored the dynamic gene expression changes of the intronic miR-338-3p and miR-338-5p and their host gene Apoptosis-associated Tyrosine Kinase (AATK) during the maturation of rat hippocampal neurons. This revealed an uncorrelated expression pattern of mature miR-338 strands with their host gene. Sequence analysis of the 3′ untranslated region (UTR) of rat AATK mRNA revealed the presence of two putative binding sites for miR-338-3p. Thus, miR-338-3p may have the capacity to modulate AATK mRNA levels in neurons. Transfection of miR-338-3p mimics into rat B35 neuroblastoma cells resulted in a significant decrease of AATK mRNA levels, while the transfection of synthetic miR-338-5p mimics did not alter AATK levels. Our results point to a possible molecular mechanism by which miR-338-3p participates in the regulation of its host gene by modulating the levels of AATK mRNA, a kinase which plays a role during differentiation, apoptosis and possibly in neuronal degeneration

    The LMTK-family of kinases: emerging important players in cell physiology and pathogenesis

    Get PDF
    Lemur Tail (former tyrosine) Kinases (LMTKs) comprise a novel family of regulated serine/threonine specific kinases with three structurally and evolutionary related members. LMTKs exercise a confusing variety of cytosolic functions in cell signalling and membrane trafficking. Moreover, LMTK2 and LMTK3 also reside in the nucleus where they participate in gene transcription/regulation. As a consequence, LMTKs impact cell proliferation and apoptosis, cell growth and differentiation, as well as cell migration. All these fundamental cell behaviours can turn awry, most prominently during neuropathologies and tumour biogenesis. In cancer cells, LMTK levels are often correlated with poor overall prognosis and therapy outcome, not least owned to acquired drug resistance. In brain tissue, LMTKs are highly expressed and have been linked to neuronal and glia cell differentiation and cell homeostasis. For one member of the LMTK-family (LMTK2) a role in cystic fibrosis has been identified. Due to their role in fundamental cell processes, altered LMTK physiology may also warrant a hitherto unappreciated role in other diseases, and expose them as potential valuable drug targets. On the backdrop of a compendium of LMTK cell functions, we hypothesize that the primary role of LMTKs may dwell within the endocytic cargo recycling and/or nuclear receptor transport pathways

    Evaluation of midkine and anterior gradient 2 in a multimarker panel for the detection of ovarian cancer

    Get PDF
    The aims of this study were: to characterise and compare plasma concentrations of midkine (MDK) in normal healthy women with concentrations observed in women with ovarian cancer; and to establish and compare the performance of MDK with that of anterior gradient 2 protein (AGR2) and CA125 in the development of multi-analyte classification algorithms for ovarian cancer. Median plasma concentrations of immunoreactive MDK, AGR2 and CA125 were significantly greater in the case cohort (909 pg/ml, 765 pg/ml and 502 U/ml, respectively n = 46) than in the control cohort (383 pg/ml, 188 pg/ml and 13 U/ml, respectively n = 61) (p < 0.001). The area under the receiver operator characteristic curve (AUC) for MDK and AGR2 was not significantly different (0.734 ± 0.046 and 0.784 ± 0.049, respectively, mean ± SE) but were both significantly less than the AUC for CA125 (0.934 ± 0.030, p < 0.003). When subjected to stochastic gradient boosted logistic regression modelling, the AUC of the multi-analyte panel (MDK, AGR2 and CA125, 0.988 ± 0.010) was significantly greater than that of CA125 alone (0.934 ± 0.030, p = 0.035). The sensitivity and specificity of the multi-analyte algorithm were 95.2 and 97.7%, respectively. Within the study cohort, CA125 displayed a sensitivity and specificity of 87.0 and 94.6%, respectively. The data obtained in this study confirm that both MDK and AGR2 individually display utility as biomarkers for ovarian cancer and that in a multi-analyte panel significantly improve the diagnostic utility of CA125 in symptomatic women

    Midkine is a NF-κB-inducible gene that supports prostate cancer cell survival

    Get PDF
    BackgroundMidkine is a heparin-binding growth factor that is over-expressed in various human cancers and plays important roles in cell transformation, growth, survival, migration, and angiogenesis. However, little is known about the upstream factors and signaling mechanisms that regulate midkine gene expression.MethodsTwo prostate cancer cell lines LNCaP and PC3 were studied for their expression of midkine. Induction of midkine expression in LNCaP cells by serum, growth factors and cytokines was determined by Western blot analysis and/or real-time quantitative reverse-transcription - polymerase chain reaction (RT-PCR). The cell viability was determined by the trypan blue exclusion assay when the LNCaP cells were treated with tumor necrosis factor alpha (TNFalpha) and/or recombinant midkine. When the LNCaP cells were treated with recombinant midkine, activation of intracellular signalling pathways was determined by Western blot analysis. Prostate tissue microarray slides containing 129 cases (18 normal prostate tissues, 40 early stage cancers, and 71 late stage cancers) were assessed for midkine expression by immunohistochemical staining.ResultsWe identified that fetal bovine serum, some growth factors (epidermal growth factor, androgen, insulin-like growth factor-I, and hepatocyte growth factor) and cytokines (TNFalpha and interleukin-1beta) induced midkine expression in a human prostate cancer cell line LNCaP cells. TNFalpha also induced midkine expression in PC3 cells. TNFalpha was the strongest inducer of midkine expression via nuclear factor-kappa B pathway. Midkine partially inhibited TNFalpha-induced apoptosis in LNCaP cells. Knockdown of endogenous midkine expression by small interfering RNA enhanced TNFalpha-induced apoptosis in LNCaP cells. Midkine activated extracellular signal-regulated kinase 1/2 and p38 mitogen-activated protein kinase pathways in LNCaP cells. Furthermore, midkine expression was significantly increased in late stage prostate cancer, which coincides with previously reported high serum levels of TNFalpha in advanced prostate cancer.ConclusionThese findings provide the first demonstration that midkine expression is induced by certain growth factors and cytokines, particularly TNFalpha, which offers new insight into understanding how midkine expression is increased in the late stage prostate cancer

    Clinical significance of midkine expression in pancreatic head carcinoma

    Get PDF
    Midkine (MK) is a heparin-binding growth factor and a product of a retinoic acid-responsive gene. Midkine is overexpressed in many carcinomas and thought to play an important role in carcinogenesis. However, no studies have been focussed on the role of MK in pancreatic carcinoma. This study sought to evaluate the clinical significance of MK expression in pancreatic head carcinoma, including the relationship between immunohistochemical expression and clinicopathologic factors such as prognosis. Immunohistochemical expression of MK and CD34 was evaluated in pancreatic head carcinoma specimens from 75 patients who underwent surgical resection. Midkine was expressed in 53.3% of patients. Midkine expression was significantly correlated with venous invasion, microvessel density, and liver metastasis (P=0.0063, 0.0025, and 0.0153, respectively). The 5-year survival rate was significantly lower for patients positive for MK vs patients negative for MK (P=0.0073). Multivariate analysis revealed that MK expression was an independent prognostic factor (P=0.0033). This is the first report of an association between MK expression and pancreatic head carcinoma. Midkine may play an important role in the progression of pancreatic head carcinoma, and evaluation of MK expression is useful for predicting malignant properties of pancreatic head carcinoma
    corecore