277 research outputs found

    A new method for improving Wi-Fi based indoor positioning accuracy

    Get PDF
    Wi-Fi and smartphone based positioning technologies are play-ing a more and more important role in Location Based Service (LBS) indus-tries due to the rapid development of the smartphone market. However, the low positioning accuracy of these technologies is still an issue for indoor positioning. To address this problem, a new method for improving the in-door positioning accuracy was developed. The new method initially used the Nearest Neighbor (NN) algorithm of the fingerprinting method to iden-tify the initial position estimate of the smartphone user. Then two distance correction values in two roughly perpendicular directions were calculated by the pass loss model based on the two signal strength indicator (RSSI) values observed. The errors from the path loss model were eliminated through differencing two model-derived distances from the same access point. The new method was tested and the results were compared and as-sessed against that of the commercial Ekahau RTLS system and the NN algorithm. The preliminary results showed that the positioning accuracy has been improved consistently after the new method was applied and the root mean square accuracy was improved to 3.4 m from 3.8 m of the NN algorithm

    Identifying in-app user actions from mobile web logs

    Get PDF
    We address the problem of identifying in-app user actions from Web access logs when the content of those logs is both encrypted (through HTTPS) and also contains automated Web accesses. We find that the distribution of time gaps between HTTPS accesses can distinguish user actions from automated Web accesses generated by the apps, and we determine that it is reasonable to identify meaningful user actions within mobile Web logs by modelling this temporal feature. A real-world experiment is conducted with multiple mobile devices running some popular apps, and the results show that the proposed clustering-based method achieves good accuracy in identifying user actions, and outperforms the state-of-the-art baseline by 17.84%

    Microparticle-mediated transfer of the viral receptors CAR and CD46, and the CFTR channel in a CHO cell model confers new functions to target cells

    Get PDF
    Cell microparticles (MPs) released in the extracellular milieu can embark plasma membrane and intracellular components which are specific of their cellular origin, and transfer them to target cells. The MP-mediated, cell-to-cell transfer of three human membrane glycoproteins of different degrees of complexity was investigated in the present study, using a CHO cell model system. We first tested the delivery of CAR and CD46, two monospanins which act as adenovirus receptors, to target CHO cells. CHO cells lack CAR and CD46, high affinity receptors for human adenovirus serotype 5 (HAdV5), and serotype 35 (HAdV35), respectively. We found that MPs derived from CHO cells (MP-donor cells) constitutively expressing CAR (MP-CAR) or CD46 (MP-CD46) were able to transfer CAR and CD46 to target CHO cells, and conferred selective permissiveness to HAdV5 and HAdV35. In addition, target CHO cells incubated with MP-CD46 acquired the CD46-associated function in complement regulation. We also explored the MP-mediated delivery of a dodecaspanin membrane glycoprotein, the CFTR to target CHO cells. CFTR functions as a chloride channel in human cells and is implicated in the genetic disease cystic fibrosis. Target CHO cells incubated with MPs produced by CHO cells constitutively expressing GFP-tagged CFTR (MP-GFP-CFTR) were found to gain a new cellular function, the chloride channel activity associated to CFTR. Time-course analysis of the appearance of GFP-CFTR in target cells suggested that MPs could achieve the delivery of CFTR to target cells via two mechanisms: the transfer of mature, membrane-inserted CFTR glycoprotein, and the transfer of CFTR-encoding mRNA. These results confirmed that cell-derived MPs represent a new class of promising therapeutic vehicles for the delivery of bioactive macromolecules, proteins or mRNAs, the latter exerting the desired therapeutic effect in target cells via de novo synthesis of their encoded proteins

    Modern cities modelled as “super-cells” rather than multicellular organisms: Implications for industry, goods and services

    Get PDF
    The structure and “metabolism” (movement and conversion of goods and energy) of urban areas has caused cities to be identified as “super-organisms”, placed between ecosystems and the biosphere, in the hierarchy of living systems. Yet most such analogies are weak, and render the super-organism model ineffective for sustainable development of cities. Via a cluster analysis of 15 shared traits of the hierarchical living system, we found that industrialized cities are more similar to eukaryotic cells than to multicellular organisms; enclosed systems, such as factories and greenhouses, paralleling organelles in eukaryotic cells. We further developed a “super-cell” industrialized city model: a “eukarcity” with citynucleus (urban area) as a regulating centre, and organaras (enclosed systems, which provide the majority of goods and services) as the functional components, and cityplasm (natural ecosystems and farmlands) as the matrix. This model may improve the vitality and sustainability of cities through planning and management

    Is spoken language all-or-nothing? Implications for future speech-based human-machine interaction

    Get PDF
    Recent years have seen significant market penetration for voice-based personal assistants such as Apple’s Siri. However, despite this success, user take-up is frustratingly low. This article argues that there is a habitability gap caused by the inevitablemismatch between the capabilities and expectations of human users and the features and benefits provided by contemporary technology. Suggestions aremade as to how such problems might be mitigated, but a more worrisome question emerges: “is spoken language all-or-nothing”? The answer, based on contemporary views on the special nature of (spoken) language, is that there may indeed be a fundamental limit to the interaction that can take place between mismatched interlocutors (such as humans and machines). However, it is concluded that interactions between native and non-native speakers, or between adults and children, or even between humans and dogs, might provide critical inspiration for the design of future speech-based human-machine interaction

    Potentiation of radiation therapy by the oncolytic adenovirus dl1520 (ONYX-015) in human malignant glioma xenografts

    Get PDF
    In spite of aggressive surgery, irradiation and/or chemotherapy, treatment of malignant gliomas remains a major challenge in adults and children due to high treatment failure. We have demonstrated significant cell lysis and antitumour activity of the E1B-55 kDa-gene-deleted adenovirus ONYX-015 (dl1520, CI-1042; ONYX Pharmaceuticals) in subcutaneous human malignant glioma xenografts deriving from primary tumours. Here, we show the combined efficacy of this oncolytic therapy with radiation therapy. Total body irradiation (5 Gy) of athymic nude mice prior to intratumoral injections of ONYX-015 1 x 10(8) PFU daily for 5 consecutive days yielded additive tumour growth delays in the p53 mutant xenograft IGRG88. Radiation therapy was potentiated in the p53 functional tumour IGRG121 with a 'subtherapeutic' dose of 1 x 10(7) PFU daily for 5 consecutive days, inducing significant tumour growth delay, 90% tumour regression and 50% tumour-free survivors 4 months after treatment. These potentiating effects were not due to increased adenoviral infectivity or replication. Furthermore, cell lysis and induction of apoptosis, the major mechanisms for adenoviral antitumour activity, did not play a major role in the combined treatment strategy. Interestingly, the oncolytic adenovirus seemed to accelerate radiation-induced tumour fibrosis. Potentiating antitumour activity suggests the development of this combined treatment for these highly malignant tumours

    Motor step size and ATP coupling efficiency of the dsDNA translocase EcoR124I

    Get PDF
    The Type I restriction-modification enzyme EcoR124I is an archetypical helicase-based dsDNA translocase that moves unidirectionally along the 3′–5′ strand of intact duplex DNA. Using a combination of ensemble and single-molecule measurements, we provide estimates of two physicochemical constants that are fundamental to a full description of motor protein activity—the ATP coupling efficiency (the number of ATP consumed per base pair) and the step size (the number of base pairs transported per motor step). Our data indicate that EcoR124I makes small steps along the DNA of 1 bp in length with 1 ATP consumed per step, but with some uncoupling of the ATPase and translocase cycles occurring so that the average number of ATP consumed per base pair slightly exceeds unity. Our observations form a framework for understanding energy coupling in a great many other motors that translocate along dsDNA rather than ssDNA

    Regulation of proteasome assembly and activity in health and disease

    Get PDF

    Transduction of Brain Dopamine Neurons by Adenoviral Vectors Is Modulated by CAR Expression: Rationale for Tropism Modified Vectors in PD Gene Therapy

    Get PDF
    Gene-based therapy is a new paradigm for the treatment of Parkinson disease (PD) and offers considerable promise for precise targeting and flexibility to impact multiple pathobiological processes for which small molecule agents are not available. Some success has been achieved utilizing adeno-associated virus for this approach, but it is likely that the characteristics of this vector system will ultimately create barriers to progress in clinical therapy. Adenovirus (Ad) vector overcomes limitations in payload size and targeting. The cellular tropism of Ad serotype 5 (Ad5)-based vectors is regulated by the Ad attachment protein binding to its primary cellular receptor, the coxsackie and adenovirus receptor (CAR). Many clinically relevant tissues are refractory to Ad5 infection due to negligible CAR levels but can be targeted by tropism-modified, CAR-independent forms of Ad. Our objective was to evaluate the role of CAR protein in transduction of dopamine (DA) neurons in vivo.Ad5 was delivered to the substantia nigra (SN) in wild type (wt) and CAR transgenic animals. Cellular tropism was assessed by immunohistochemistry (IHC) in the SN and striatal terminals. CAR expression was assessed by western blot and IHC. We found in wt animals, Ad5 results in robust transgene expression in astrocytes and other non-neuronal cells but poor infection of DA neurons. In contrast, in transgenic animals, Ad5 infects SNc neurons resulting in expression of transduced protein in their striatal terminals. Western blot showed low CAR expression in the ventral midbrain of wt animals compared to transgenic animals. Interestingly, hCAR protein localizes with markers of post-synaptic structures, suggesting synapses are the point of entry into dopaminergic neurons in transgenic animals.These findings demonstrate that CAR deficiency limits infection of wild type DA neurons by Ad5 and provide a rationale for the development of tropism-modified, CAR-independent Ad-vectors for use in gene therapy of human PD
    corecore