34 research outputs found

    Macrophages target Salmonella by Lc3-associated phagocytosis in a systemic infection model

    Get PDF
    Innate immune defense against intracellular pathogens, like Salmonella, relies heavily on the autophagy machinery of the host. This response is studied intensively in epithelial cells, the target of Salmonella during gastrointestinal infections. However, little is known of the role that autophagy plays in macrophages, the predominant carriers of this pathogen during systemic disease. Here we utilize a zebrafish embryo model to study the interaction of S. enterica serovar Typhimurium with the macroautophagy/autophagy machinery of macrophages in vivo. We show that phagocytosis of live but not heat-killed Salmonella triggers recruitment of the autophagy marker GFP-Lc3 in a variety of patterns labeling tight or spacious bacteria-containing compartments, also revealed by electron microscopy. Neutrophils display similar GFP-Lc3 associations, but genetic modulation of the neutrophil/macrophage balance and ablation experiments show that macrophages are critical for the defense response. Deficiency of atg5 reduces GFP-Lc3 recruitment and impairs host resistance, in contrast to atg13 deficiency, indicating that Lc3-Salmonella association at this stage is independent of the autophagy preinitiation complex and that macrophages target Salmonella by Lc3-associated phagocytosis (LAP). In agreement, GFP-Lc3 recruitment and host resistance are impaired by deficiency of Rubcn/Rubicon, known as a negative regulator of canonical autophagy and an inducer of LAP. We also found strict dependency on NADPH oxidase, another essential factor for LAP. Both Rubcn and NADPH oxidase are required to activate a Salmonella biosensor for reactive oxygen species inside infected macrophages. These results identify LAP as the major host protective autophagy-related pathway responsible for macrophage defense against Salmonella during systemic infection

    Identification and Characterization of σS, a Novel Component of the Staphylococcus aureus Stress and Virulence Responses

    Get PDF
    S. aureus is a highly successful pathogen that is speculated to be the most common cause of human disease. The progression of disease in S. aureus is subject to multi-factorial regulation, in response to the environments encountered during growth. This adaptive nature is thought to be central to pathogenesis, and is the result of multiple regulatory mechanisms employed in gene regulation. In this work we describe the existence of a novel S. aureus regulator, an as yet uncharacterized ECF-sigma factor (σS), that appears to be an important component of the stress and pathogenic responses of this organism. Using biochemical approaches we have shown that σS is able to associates with core-RNAP, and initiate transcription from its own coding region. Using a mutant strain we determined that σS is important for S. aureus survival during starvation, extended exposure to elevated growth temperatures, and Triton X-100 induced lysis. Coculture studies reveal that a σS mutant is significantly outcompeted by its parental strain, which is only exacerbated during prolonged growth (7 days), or in the presence of stressor compounds. Interestingly, transcriptional analysis determined that under standard conditions, S. aureus SH1000 does not initiate expression of sigS. Assays performed hourly for 72h revealed expression in typically background ranges. Analysis of a potential anti-sigma factor, encoded downstream of sigS, revealed it to have no obvious role in the upregulation of sigS expression. Using a murine model of septic arthritis, sigS-mutant infected animals lost significantly less weight, developed septic arthritis at significantly lower levels, and had increased survival rates. Studies of mounted immune responses reveal that sigS-mutant infected animals had significantly lower levels of IL-6, indicating only a weak immunological response. Finally, strains of S. aureus lacking sigS were far less able to undergo systemic dissemination, as determined by bacterial loads in the kidneys of infected animals. These results establish that σS is an important component in S. aureus fitness, and in its adaptation to stress. Additionally it appears to have a significant role in its pathogenic nature, and likely represents a key component in the S. aureus regulatory network

    Activated PI3K Delta Syndrome-1 mutations cause neutrophilia in zebrafish larvae

    Get PDF
    People with Activated PI3 Kinase Delta Syndrome 1 (APDS1) suffer from immune deficiency and severe bronchiectasis. APDS1 is caused by dominant activating mutations of the PIK3CD gene that encodes the PI3 kinase delta (PI3Kδ) catalytic subunit. Despite the importance of innate immunity defects in bronchiectasis, there has been limited investigation of neutrophils or macrophages in APDS1 patients or mouse models. Zebrafish embryos provide an ideal system to study neutrophils and macrophages. Previous studies of zebrafish with strongly hyperactivated PI3 kinase activity due to Pten deficiency, revealed excessive production of immature neutrophils that fail to mature. We used CRISPR-Cas9 and CRISPR-Cpf1, with oligo-nucleotide directed homologous repair, to engineer zebrafish equivalents of the two most prevalent human APDS1 disease mutations. These zebrafish pik3cd alleles dominantly cause excessive neutrophilic inflammation in a tail-fin injury model. They also exhibit total body neutrophilia in the absence of any inflammatory stimulus but have normal numbers of macrophages. Exposure to the PI3Kδ inhibitor CAL-101 reverses the total body neutrophilia. There is no apparent defect in neutrophil maturation or migration and tail-fin regeneration is unimpaired

    Bacterial size matters:Multiple mechanisms controlling septum cleavage and diplococcus formation are critical for the virulence of the opportunistic pathogen Enterococcus faecalis

    Get PDF
    Enterococcus faecalis is an opportunistic pathogen frequently isolated in clinical settings. This organism is intrinsically resistant to several clinically relevant antibiotics and can transfer resistance to other pathogens. Although E. faecalis has emerged as a major nosocomial pathogen, the mechanisms underlying the virulence of this organism remain elusive. We studied the regulation of daughter cell separation during growth and explored the impact of this process on pathogenesis. We demonstrate that the activity of the AtlA peptidoglycan hydrolase, an enzyme dedicated to septum cleavage, is controlled by several mechanisms, including glycosylation and recognition of the peptidoglycan substrate. We show that the long cell chains of E. faecalis mutants are more susceptible to phagocytosis and are no longer able to cause lethality in the zebrafish model of infection. Altogether, this work indicates that control of cell separation during division underpins the pathogenesis of E. faecalis infections and represents a novel enterococcal virulence factor. We propose that inhibition of septum cleavage during division represents an attractive therapeutic strategy to control infections

    DRAM1 confers resistance to Salmonella infection

    Get PDF
    DRAM1 is an infection inducible autophagy modulator, previously shown to promote autophagic and lysosomal defense responses against the intracellular pathogen Mycobacterium marinum. However, its possible role in other anti-bacterial autophagic mechanisms remains unknown. Recently, LC3-associated phagocytosis (LAP) has emerged as autophagy-related mechanism that targets bacteria directly in phagosomes. Our previous work established LAP as the main autophagic mechanism by which macrophages restrict growth of Salmonella Typhimurium in a systemically infected zebrafish host. We therefore employed this infection model to investigate the possible role of Dram1 in LAP. Morpholino knockdown or CRISPR/Cas9-mediated mutation of Dram1 led to reduced host survival and increased bacterial burden during S. Typhimurium infection. In contrast, overexpression of dram1 by mRNA injection curtailed Salmonella replication and reduced mortality of the infected host. During the early response to infection, GFP-Lc3-Salmonella associations were reduced in dram1 knockdown or mutant embryos, and increased by dram1 overexpression. Since LAP is known to require the activity of the phagosomal NADPH oxidase, we used a Salmonella biosensor strain to detect bacterial exposure to reactive oxygen species (ROS) and found that the ROS response was largely abolished with deficiency of dram1, while it was increased with dram1 overexpression. Corroborating these results in a mammalian model, the LC3 and ROS responses to Salmonella were similarly reduced or increased by knockdown or overexpression of Dram1, respectively, in murine RAW264.7 macrophages. Together, these results demonstrate the host protective role of Dram1/DRAM1 during S. Typhimurium infection and suggest a functional link between Dram1/DRAM1 and the induction of LAP. Abbreviations: ATG8: Autophagy related protein 8; ATG16: Autophagy related protein 16; CFU: colony-forming unit; DRAM1: DNA damage regulated autophagy modulator gene 1; dpf: days post fertilization; GFP: green fluorescent protein; hpi: hours post infection; LAP: LC3 associated phagocytosis; LC3, microtubule-associated protein 1 light chain 3; NADPH: Nicotinamide dinucleotide phosphate; p53: Tumor suppressor protein 53: ROS; reactive oxygen species; S. Typhimurium: Salmonella enterica serovar Typhimurium; TIPTP: 2(tetrahydroindazolyl) phenoxy-N-(thiadiazolyl)propenamide 2; UVRAG: UV radiation resistance associated protei

    Intracellular <i>Staphylococcus aureus</i> eludes selective autophagy by activating a host cell kinase

    No full text
    <p>Autophagy, a catabolic pathway of lysosomal degradation, acts not only as an efficient recycle and survival mechanism during cellular stress, but also as an anti-infective machinery. The human pathogen <i>Staphylococcus aureus</i> (<i>S. aureus</i>) was originally considered solely as an extracellular bacterium, but is now recognized additionally to invade host cells, which might be crucial for persistence. However, the intracellular fate of <i>S. aureus</i> is incompletely understood. Here, we show for the first time induction of selective autophagy by <i>S. aureus</i> infection, its escape from autophagosomes and proliferation in the cytoplasm using live cell imaging. After invasion, <i>S. aureus</i> becomes ubiquitinated and recognized by receptor proteins such as SQSTM1/p62 leading to phagophore recruitment. Yet, <i>S. aureus</i> evades phagophores and prevents further degradation by a MAPK14/p38α MAP kinase-mediated blockade of autophagy. Our study demonstrates a novel bacterial strategy to block autophagy and secure survival inside the host cell.</p

    The Lysozyme-Induced Peptidoglycan N-Acetylglucosamine Deacetylase PgdA (EF1843) Is Required for Enterococcus faecalis Virulence

    No full text
    Lysozyme is a key component of the innate immune response in humans that provides a first line of defense against microbes. The bactericidal effect of lysozyme relies both on the cell wall lytic activity of this enzyme and on a cationic antimicrobial peptide activity that leads to membrane permeabilization. Among Gram-positive bacteria, the opportunistic pathogen Enterococcus faecalis has been shown to be extremely resistant to lysozyme. This unusual resistance is explained partly by peptidoglycan O-acetylation, which inhibits the enzymatic activity of lysozyme, and partly by D-alanylation of teichoic acids, which is likely to inhibit binding of lysozyme to the bacterial cell wall. Surprisingly, combined mutations abolishing both peptidoglycan O-acetylation and teichoic acid alanylation are not sufficient to confer lysozyme susceptibility. In this work, we identify another mechanism involved in E. faecalis lysozyme resistance. We show that exposure to lysozyme triggers the expression of EF1843, a protein that is not detected under normal growth conditions. Analysis of peptidoglycan structure from strains with EF1843 loss- and gain-of-function mutations, together with in vitro assays using recombinant protein, showed that EF1843 is a peptidoglycan N-acetylglucosamine deacetylase. EF1843-mediated peptidoglycan deacetylation was shown to contribute to lysozyme resistance by inhibiting both lysozyme enzymatic activity and, to a lesser extent, lysozyme cationic antimicrobial activity. Finally, EF1843 mutation was shown to reduce the ability of E. faecalis to cause lethality in the Galleria mellonella infection model. Taken together, our results reveal that peptidoglycan deacetylation is a component of the arsenal that enables E. faecalis to thrive inside mammalian hosts, as both a commensal and a pathogen

    The effect of sub-curative antibiotic doses on zebrafish embryos infected with a variety of pathogens.

    No full text
    <p>Embryos were infected with a 1∶1 mixture of (A) <i>S. aureus</i> NewHG EryR∶TetR bacteria (treated with 2.5 µg/ml tetracycline), (B) <i>P. aeruginosa</i> PAO1-L GmR∶TetR bacteria (treated with 50 µg/ml tetracycline), (C) <i>S. aureus</i> BH1CC OxS∶OxR bacteria (treated with 32 µg/ml oxacillin) or (D) <i>S. aureus</i> SH1000 EryR∶TetR bacteria (treated with 100 µg/ml erythromycin). Terminal sensitive/resistant strain ratio per embryo is shown in each case. Solid lines indicate median values.</p
    corecore