45 research outputs found

    Experimental study of radiative shocks at PALS facility

    Full text link
    We report on the investigation of strong radiative shocks generated with the high energy, sub-nanosecond iodine laser at PALS. These shock waves are characterized by a developed radiative precursor and their dynamics is analyzed over long time scales (~50 ns), approaching a quasi-stationary limit. We present the first preliminary results on the rear side XUV spectroscopy. These studies are relevant to the understanding of the spectroscopic signatures of accretion shocks in Classical T Tauri Stars.Comment: 21 pages, 1 table, 7 figure

    Experimental investigation of fast electron transport in solid density matter: Recent results from a new technique of X-ray energy-encoded 2D imaging

    Get PDF
    AbstractThe development activity of a new experimental technique for the study of the fast electron transport in high density matter is reported. This new diagnostic tool enables the X-ray 2D imaging of ultrahigh intensity laser plasmas with simultaneous spectral resolution in a very large energy range to be obtained. Results from recent experiments are discussed, in which the electron propagation in multilayer targets was studied by using the Kα. In particular, results highlighting the role of anisotropic Bremsstrahlung are reported, for the sake of the explanation of the capabilities of the new diagnostics. A discussion of a test experiment conceived to extend the technique to a single-shot operation is finally given

    X-ray microscopy of living multicellular organisms with the Prague Asterix Iodine Laser System

    Get PDF
    Soft X-ray contact microscopy (SXCM) experiments have been performed using the Prague Asterix Iodine Laser System (PALS). Laser wavelength and pulse duration were λ = 1.314 μm and τ (FWHM) = 450 ps, respectively. Pulsed X rays were generated using teflon, gold, and molybdenum targets with laser intensities I ≥ 1014 W/cm2. Experiments have been performed on the nematodes Caenorhabditis elegans. Images were recorded on PMMA photo resists and analyzed using an atomic force microscope operating in contact mode. Our preliminary results indicate the suitability of the SXCM for multicellular specimens

    Shock pressure induced by 0.44 [mu]m laser radiation on aluminum targets

    Get PDF
    Shock pressure generated in aluminum targets due to the interaction of 0.44 μm (3 ω of iodine laser) laser radiation has been studied. The laser intensity profile was smoothed using phase zone plates. Aluminum step targets were irradiated at an intensity I ≈ 1014 W/cm2. Shock velocity in the aluminum target was estimated by detecting the shock luminosity from the target rear using a streak camera to infer the shock pressure. Experimental results show a good agreement with the theoretical model based on the delocalized laser absorption approximation. In the present report, we explicitly discuss the importance of target thickness on the shock pressure scaling

    Fs-laser-written erbium-doped double tungstate waveguide laser

    Get PDF
    [EN]We report on the first erbium (Er3+) doped double tungstate waveguide laser. As a gain material, we studied a monoclinic Er3+:KLu(WO4)2 crystal. A depressed-index buried channel waveguide formed by a 60 μm-diameter circular cladding was fabricated by 3D femtosecond direct laser writing. The waveguide was characterized by confocal laser microscopy, μ-Raman and μ-luminescence mapping, confirming that the crystallinity of the core is preserved. The waveguide laser, diode pumped at 981 nm, generated 8.9 mW at 1533.6 nm with a slope efficiency of 20.9% in the continuous-wave regime. The laser polarization was linear (ENm). The laser threshold was at 93 mW of absorbed pump power

    Efficient ASE Management in Disk Laser Amplifiers With Variable Absorbing Clads

    No full text
    corecore