7,274 research outputs found

    Beyond the unitarity bound in AdS/CFT_(A)dS

    Full text link
    In this work we expand on the holographic description of CFTs on de Sitter (dS) and anti-de Sitter (AdS) spacetimes and examine how violations of the unitarity bound in the boundary theory are recovered in the bulk physics. To this end we consider a Klein-Gordon field on AdS_(d+1) conformally compactified such that the boundary is (A)dS_d, and choose masses and boundary conditions such that the corresponding boundary operator violates the CFT unitarity bound. The setup in which the boundary is AdS_d exhibits a particularly interesting structure, since in this case the boundary itself has a boundary. The bulk theory turns out to crucially depend on the choice of boundary conditions on the boundary of the AdS_d slices. Our main result is that violations to the unitarity bound in CFTs on dS_d and AdS_d are reflected in the bulk through the presence of ghost excitations. In addition, analyzing the setup with AdS_d on the boundary allows us to draw conclusions on multi-layered AdS/CFT-type dualities.Comment: 30 pages, 2 figures; reference adde

    A non-Abelian Black Ring

    Get PDF
    We construct a supersymmetric black ring solution of SU(2) N=1, d=5 Super-Einstein-Yang-Mills (SEYM) theory by adding a distorted BPST instanton to an Abelian black ring solution of the same theory. The change cannot be observed from spatial infinity: neither the mass, nor the angular momenta or the values of the scalars at infinity differ from those of the Abelian ring. The entropy is, however, sensitive to the presence of the non-Abelian instanton, and it is smaller than that of the Abelian ring, in analogy to what happens in the supersymmetric coloured black holes recently constructed in the same theory and in N=2, d=4 SEYM. By taking the limit in which the two angular momenta become equal we derive a non-Abelian generalization of the BMPV rotating black-hole solution.Comment: 19 pages, no figure

    Large lepton mixing and supernova 1987A

    Get PDF
    We reconsider the impact of νˉeνˉμ,τ\bar\nu_e \leftrightarrow \bar\nu_{\mu,\tau} neutrino oscillations on the observed νˉe\bar\nu_e signal of supernova SN 1987A. Performing a maximum-likelihood analysis using as fit parameters the released binding energy \Eb and the average neutrino energy \Ee, we find as previous analyses that νˉeνˉμ,τ\bar\nu_e \leftrightarrow \bar\nu_{\mu,\tau} oscillations with large mixing angles have lower best-fit values for \Ee than small-mixing angle (SMA) oscillations. Moreover, the inferred value of \Ee is already in the SMA case lower than those found in simulations. This apparent conflict has been interpreted as evidence against the large mixing oscillation solutions to the solar neutrino problem. In order to quantify the degree to which the experimental data favour the SMA over the large mixing solutions we use their likelihood ratios as well as a Kolmogorov-Smirnov test. We find within the range of SN parameters predicted by simulations regions in which the LMA-MSW solution is either only marginally disfavoured or favoured compared to the SMA-MSW solution. We conclude therefore that the LMA-MSW solution is not in conflict with the current understanding of SN physics. In contrast, the vacuum oscillation and the LOW solutions to the solar neutrino problem can be excluded at the 4σ4\sigma level for most of the SN parameter ranges found in simulations. Only a marginal region with low values of \Ee, and \Eb is left over, in which these oscillation solutions can be reconciled with the neutrino signal of SN 1987A.Comment: 23 pages, 20 figures, v2: brief comments adde

    Surveying the SO(10) Model Landscape: The Left-Right Symmetric Case

    Get PDF
    Grand Unified Theories (GUTs) are a very well motivated extensions of the Standard Model (SM), but the landscape of models and possibilities is overwhelming, and different patterns can lead to rather distinct phenomenologies. In this work we present a way to automatise the model building process, by considering a top to bottom approach that constructs viable and sensible theories from a small and controllable set of inputs at the high scale. By providing a GUT scale symmetry group and the field content, possible symmetry breaking paths are generated and checked for consistency, ensuring anomaly cancellation, SM embedding and gauge coupling unification. We emphasise the usefulness of this approach for the particular case of a non-supersymmetric SO(10) model with an intermediate left-right symmetry and we analyse how low-energy observables such as proton decay and lepton flavour violation might affect the generated model landscape.Comment: 36 pages, 6 figure

    Compressed and Split Spectra in Minimal SUSY SO(10)

    Get PDF
    The non-observation of supersymmetric signatures in searches at the Large Hadron Collider strongly constrains minimal supersymmetric models like the CMSSM. We explore the consequences on the SUSY particle spectrum in a minimal SO(10) with large D-terms and non-universal gaugino masses at the GUT scale. This changes the sparticle spectrum in a testable way and for example can sufficiently split the coloured and non-coloured sectors. The splitting provided by use of the SO(10) D-terms can be exploited to obtain light first generation sleptons or third generation squarks, the latter corresponding to a compressed spectrum scenario.Comment: 35 pages, 10 figures, published versio

    N=2 Einstein-Yang-Mills' static two-center solutions

    Get PDF
    We construct bona fide one- and two-center supersymmetric solutions to N=2, d=4 supergravity coupled to SU(2) non-Abelian vector multiplets. The solutions describe black holes and global monopoles alone or in equilibrium with each other and exhibit non-Abelian hairs of different kinds.Comment: 46 pages, 1 figure; v2 references adde

    Non-Abelian black holes in string theory

    Get PDF
    We study a family of 5-dimensional non-Abelian black holes that can be obtained by adding an instanton field to the well-known D1D5W Abelian black holes. Naively, the non-Abelian fields seem to contribute to the black-hole entropy but not to the mass due to their rapid fall-off at spatial infinity. By uplifting the 5-dimensional supergravity solution to 10-dimensional Heterotic Supergravity first and then dualizing it into a Type-I Supergravity solution, we show that the non-Abelian fields are associated to D5-branes dissolved into the D9-branes (dual to the Heterotic "gauge 5-branes") and that their associated RR charge does not, in fact, contribute to the entropy, which only depends on the number16 pages of D-strings and D5 branes and the momentum along the D-strings, as in the Abelian case. These "dissolved" or "gauge" D5-branes do contribute to the mass in the expected form. The correct interpretation of the 5-dimensional charges in terms of the string-theory objects solves the non-Abelian hair puzzle, allowing for the microscopic accounting of the entropy. We discuss the validity of the solution when alpha prime corrections are taken into account.Comment: Latex 2e file, 21 pages. A full appendix on alpha prime corrections and the corresponding discussions have been added. The conclusions have suffered minor changes. Version accepted in JHE

    Spatial Filtering Pipeline Evaluation of Cortically Coupled Computer Vision System for Rapid Serial Visual Presentation

    Get PDF
    Rapid Serial Visual Presentation (RSVP) is a paradigm that supports the application of cortically coupled computer vision to rapid image search. In RSVP, images are presented to participants in a rapid serial sequence which can evoke Event-related Potentials (ERPs) detectable in their Electroencephalogram (EEG). The contemporary approach to this problem involves supervised spatial filtering techniques which are applied for the purposes of enhancing the discriminative information in the EEG data. In this paper we make two primary contributions to that field: 1) We propose a novel spatial filtering method which we call the Multiple Time Window LDA Beamformer (MTWLB) method; 2) we provide a comprehensive comparison of nine spatial filtering pipelines using three spatial filtering schemes namely, MTWLB, xDAWN, Common Spatial Pattern (CSP) and three linear classification methods Linear Discriminant Analysis (LDA), Bayesian Linear Regression (BLR) and Logistic Regression (LR). Three pipelines without spatial filtering are used as baseline comparison. The Area Under Curve (AUC) is used as an evaluation metric in this paper. The results reveal that MTWLB and xDAWN spatial filtering techniques enhance the classification performance of the pipeline but CSP does not. The results also support the conclusion that LR can be effective for RSVP based BCI if discriminative features are available
    corecore