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We construct a supersymmetric black ring solution of SU(2) N = 1, d = 5 Super-Einstein–Yang–Mills
(SEYM) theory by adding a distorted BPST instanton to an Abelian black ring solution of the same theory. 
The change cannot be observed from spatial infinity: neither the mass, nor the angular momenta or the 
values of the scalars at infinity differ from those of the Abelian ring. The entropy is, however, sensitive 
to the presence of the non-Abelian instanton, and it is smaller than that of the Abelian ring, in analogy 
to what happens in the supersymmetric colored black holes recently constructed in the same theory and 
in N = 2, d = 4 SEYM. By taking the limit in which the two angular momenta become equal we derive a 
non-Abelian generalization of the BMPV rotating black-hole solution.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
0. Introduction

The discovery of black rings by Emparan and Reall in Ref. [1]
showed how two important properties of 4-dimensional asympto-
tically-flat black holes, uniqueness/no-hair and spherical topology 
of the event horizon (which, for the 5-dimensional black ring, is 
S2 × S1), could be violated in higher dimensions.1 For a range of 
values of the conserved charges (mass, angular momenta) that may 
characterize an uncharged black ring, a different black-ring and a 
black-hole solutions are also possible. For charged black rings (the 
first of which was constructed in Ref. [5]) the non-uniqueness be-
comes infinite; for the same conserved electric charges one can 
construct black rings with regular horizons with magnetic dipole 
momenta taking continuous values in some interval [6]. Despite 
being innocuous to the conserved charges, these dipole momenta 
do contribute to the BH entropy. The construction of supersymmet-
ric black-ring solutions in minimal [7] or matter-coupled N = 1, 
d = 5 supergravity [8–12] using the general classification of super-
symmetric solutions of these theories started in Ref. [13] opened 
up the possibility of constructing very general families of black-
ring solutions with various kinds of electric charges and moduli in 
which these issues could be studied.

The violation of the no-hair conjecture by non-Abelian fields in 
4-dimensions is also a well-known but less stressed fact, perhaps 
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because the first solutions in which this was observed [14–16], 
black-hole generalizations of the “Bartnik–McKinnon particle” [17]
with asymptotically vanishing gauge charges, were purely numer-
ical, which makes more difficult their study and understanding.2

The first black-holes with non-Abelian hair (not related to the 
embedding of an Abelian field into a non-Abelian one through a 
singular gauge transformation) given in an analytical form were 
found using supersymmetry techniques in the context of N = 2, 
d = 4 Super-Einstein–Yang–Mills (SEYM) theory3 in Refs. [20] and 
[21] using the general classification of the timelike supersymmetric 
solutions of these theories made in Ref. [22]. The black-hole solu-
tions constructed in Ref. [21] include the field of an SU(2) colored
monopole found by Protogenov in [23] which also has asymptoti-
cally vanishing gauge charge. The monopole charge does contribute 
to the entropy, though. These black holes, which can be seen as 
the result of adding the colored monopole to a standard black 
hole with Abelian charges, modifying the entropy but none of the 
asymptotic charges, were called colored black holes and they seem 
to be ubiquitous [24].

2 For a review on hairy and non-Abelian black-hole solutions see Ref. [18] or the 
more recent Ref. [19].

3 This theory is the simplest N = 2 supersymmetric generalization of the 
Einstein–Yang–Mills theory. This supersymmetrization requires the addition of 
scalar fields to the pure Einstein–Yang–Mills theory in order to complete N = 2, 
d = 4 vector supermultiplets and, often, the addition of full vector supermultiplets 
to fulfill the requirements of Special Geometry. There may be more than one way of 
performing this supersymmetrization. Thus, there are more than one N = 2, d = 4
SEYM theory with gauge group SU(2), for instance. These theories are also known 
as non-Abelian gauged N = 2, d = 4 supergravity coupled to vector supermultiplets.
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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The results of Ref. [22] have been used more recently to con-
struct new single-center and two-center non-Abelian solutions of 
N = 2, d = 4 SEYM models that can be obtained by dimensional 
reduction of N = 1, d = 5 SEYM models4 in Ref. [25].

One of the main goals of that exercise was to open the possi-
bility for the construction of the first non-Abelian black-hole so-
lutions in d = 5 by oxidation to d = 5 of those solutions, because 
the direct construction using the general classification of timelike 
supersymmetric solutions of Refs. [26,27] turns out to be too com-
plicated. This can only be done for certain models of the lower 
dimensional theory. The oxidation itself turned out to be a non-
trivial exercise if one wanted to construct solutions without spatial 
translation isometries (which would be black strings instead of 
black holes), but, as was shown in Ref. [28], one can use non-trivial 
cycles to perform the reduction and still preserve supersymmetry, 
basically using Kronheimer’s mechanism [29]. Both kinds of black 
solutions (strings and holes) were recently constructed in Ref. [30].

The d = 5 non-Abelian black holes constructed there are, again, 
colored black holes, with asymptotically vanishing gauge fields. 
They can be understood as the result of adding a BPST instanton 
to a black hole with Abelian charges, leaving the mass and electric 
charges unmodified. Just as in the 4-dimensional case, the non-
Abelian field does contribute to the entropy. The BPST instanton 
field turns out to be related by dimensional redox to the colored
monopole at the heart of the 4-dimensional colored black holes.

It is natural to try to see if black-rings also admit the addition 
of non-Abelian instanton fields and the effect this addition may 
have on the mass and entropy. In this paper we are going to con-
struct and study a regular supersymmetric black-ring solution of 
N = 1, d = 5 SEYM with a distorted BPST instanton. We start by 
reviewing in Section 1 the recipe that we are going to use to con-
struct timelike supersymmetric solutions, which was obtained in 
Ref. [30]. In Section 2 we will carry out the construction of the 
solution after which we will study its regularity and we will com-
pute its essential properties. In Section 3 we will study the limit 
in which the black ring becomes a non-Abelian rotating black hole. 
Our conclusions are in Section 4.

1. The recipe to construct solutions

N = 1, d = 5 Super-Einstein–Yang–Mills (SEYM) theories de-
scribe a supergravity multiplet (constituted by the graviton ea

μ , 
the gravitino ψ i

μ and the graviphoton A0
μ) coupled to nv vector 

multiplets labeled by x = 1, · · · , nv (each containing a real vec-
tor field Ax

μ , a real scalar φx and a gaugino λi x). The gravipho-
ton and the matter vector fields are collectively denoted by AI

μ , 
I, J , . . . = 0, 1, · · · , nv . The ungauged theory (the couplings be-
tween scalars and vector fields dictated by the σ -model metric 
gxy(φ), the kinetic matrix aI J (φ) and the Chern–Simons couplings) 
is completely determined by a constant symmetric tensor C I J K .5

In the gauged theory, a subset of the vector fields plays the role
of gauge field of some non-Abelian group whose structure con-
stants will be denoted by f I J

K in the understanding that they will 
just vanish for the values of the indices that do not correspond 

4 Again, these are the simplest, but not unique N = 1 (minimal) supersym-
metrizations of the d = 5 Einstein–Yang–Mills theory and the supersymmetrization 
requires the addition of, at least, scalars. They also go by the name of non-Abelian-
gauged N = 1, d = 5 coupled to vector supermultiplets.

5 Our conventions are those of Refs. [31,26] and are based on Ref. [32]. In those 
references it is explained how to obtain gxy(φ) and aI J (φ) from C I J K . The Chern–
Simons coupling are directly determined by C I J K .

The supersymmetric solutions of the most general N = 1, d = 5 supergravity 
theory including vector supermultiplets and hypermultiplets and generic gaugings 
were characterized in Ref. [26]. The inclusion of tensor supermultiplets was consid-
ered in Ref. [27].
to the gauge fields. The transformations of the scalars under the 
gauge group are generated by Killing vectors of the σ -model met-
ric kI

x(φ) satisfying the Lie algebra of the gauge group. Again, it is 
assumed that they can be identically zero for the values of I, J , · · ·
corresponding to the ungauged directions.

Thus, the bosonic action of N = 1, d = 5 SEYM is given by

S =
∫

d5x
√

g

{
R + 1

2 gxyDμφxDμφ y − 1
4 aI J F I μν F J

μν

+ 1
12

√
3

C I J K
εμνρσα

√
g

[
F I

μν F J
ρσ AK

α

− 1
2 ĝ f LM

I F J
μν AK

ρ AL
σ AM

α

+ 1
10 ĝ2 f LM

I f N P
J AK

μ AL
ν AM

ρ AN
σ A P

α

]}
,

(1.1)

where ĝ is the gauge coupling constant, F I
μν = 2∂[μ AI

ν] +
ĝ f J K

I A J
μ AK

ν are the non-Abelian vector field strengths and 
Dμφx = ∂μφx + ĝ A I

μkI
x are the gauge-covariant derivatives of the 

scalars.
In Ref. [30] we have found a procedure to construct system-

atically timelike supersymmetric solutions admitting an additional 
spacelike isometry (with adapted coordinate z) of any N = 1, d = 5
Super-Einstein–Yang–Mills (SEYM):

1. Find a set of t- and z-independent functions M, H, �I , LI and 
1-forms ω, AI , χ in E3 satisfying the equations (defined in E3

as well)6

d �3 dM = 0 , (1.2)

�3dH − dχ = 0 , (1.3)

�3D̆�I − F̆ I = 0 , (1.4)

D̆2LI − g2 f I J
L f K L

M� J �K LM = 0 , (1.5)

�3dω −
{

HdM − MdH + 3
√

2(�ID̆LI − LID̆�I )
}

= 0 . (1.6)

The first two equations state that H and M are harmonic func-
tions on E3. Once H is given, the second equation (which is 
the Abelian Bogomol’nyi equation on E3 [33]) can be solved 
for χ . Eq. (1.4) is the general Bogomol’nyi equation on E3. In 
the ungauged (Abelian) directions, it implies that the �I are 
harmonic functions on E3 and, once they are chosen, the cor-
responding vectors Ă I can be determined. In the non-Abelian 
directions, the equation becomes non-linear and one has to 
find simultaneously solutions for the functions �I and gauge 
fields Ă I through adequate ansatzs or other methods. Eq. (1.5)
is automatically solved if we choose LI ∝ �I (or zero). Fi-
nally, Eq. (1.6) can always be solved if the other equations are 
solved (because they solve its integrability condition), except, 
perhaps, at the singularities of the functions where, strictly 
speaking, the other equations are not solved. In most cases, the 
integrability condition can be solved by a choice of integration 
constants in the functions H, M, LI , �I . Then, of course, one 
has to integrate explicitly Eq. (1.6) to obtain ω.

2. Using them, reconstruct the solution’s 5-dimensional space-
time fields as follows:
(a) The scalars can be found from this equation for the quo-

tients hI (φ)/ f̂

hI/ f̂ = LI + 8C I J K � J �K /H , (1.7)

6 The gauge coupling constant appearing in these expressions has been rescaled 
with respect to that occuring in the action, g = −2

√
6ĝ .



T. Ortín, P.F. Ramírez / Physics Letters B 760 (2016) 475–481 477
because there is always a parametrization of the scalar 
manifold such that

φx ≡ hx/h0 . (1.8)

With the above equation for the quotients hI (φ)/ f̂ one can 
also determine the function f̂ . For the special case of sym-
metric scalar manifolds, it is given by7

f̂ −3 = 33C I J K LI L J LK + 34 · 23C I J K C K LM LI L J �
L�M/H

+ 3 · 26LI�
I C J K L�

J �K �L/H2

+ 29
(
C I J K �I� J �K

)2
/H3 .

(1.9)

(b) The metric has the form

ds2 = f̂ 2(dt + ω̂)2 − f̂ −1dŝ2 , (1.10)

where f̂ has been determined above, the 1-form ω̂ is given 
by8

ω̂ = ω5(dz + χ) + ω , (1.11)

ω5 = M + 16
√

2H−2C I J K �I� J �K

+ 3
√

2H−1LI�
I , (1.12)

and where the 4-dimensional Euclidean metric dŝ2 is given 
by9

dŝ2 = H−1(dz + χ)2 + Hdxrdxr , r = 1,2,3 . (1.13)

(c) The vector fields and their corresponding field strengths 
are given by

AI = −√
3hI f̂ (dt + ω̂) + Â I ,

F I = −√
3D̂[hI f̂ (dt + ω̂)] + F̂ I ,

(1.14)

where the vector fields Â I , defined on the 4-dimensional 
Euclidean space dŝ2, and their field strengths are given by

Â I = 2
√

6
[

H−1�I (dz + χ) − Ă I
]

,

F̂ I = 2
√

6H−1
[
D̆�I ∧ (dz + χ) − �3 HD̆�I

]
,

(1.15)

where D̂ (resp. D̆) is the exterior gauge-covariant deriva-
tive with respect to the connection Â I (resp. Ă I ).

In Ref. [30] we used this recipe to construct black-hole solutions 
with non-Abelian gauge and scalar fields for the SU(2)-gauged 
ST[2, 5] model.10 This model has 4 vector multiplets and, hence, 
4 scalar fields that parametrize the symmetric space SO(1, 3)/

SO(3). It is defined by a tensor C I J K with the following non-
vanishing components

C0xy = 1
6ηxy ,where (ηxy) = diag(+ − · · ·−) , and

x, y = 1, · · · ,4 . (1.16)

The directions to be gauged are the last three, which we will 
denote by indices α, β, . . . = 2, 3, 4. The ungauged directions will 
be denoted by indices i, j, . . . = 0, 1.

7 In this expression, C I J K ≡ C I J K .
8 The unhatted ω is the one occurring in Eq. (1.6).
9 With H and χ related by Eq. (1.3), this is a hyperKähler metric admitting a 

triholomorphic Killing vector, also known as Gibbons–Hawking metric [34,35]. We 
will also denote the compact coordinate z by ϕ . It will be assumed to take values 
in [0, 4π).
10 Actually, this is the name of the model of N = 2, d = 4 supergravity one obtains 

by dimensional reduction.
Being a symmetric space, we can use Eq. (1.9) to write the met-
ric function f̂ as a function of the building blocks H, LI , �I :

f̂ −1 = H−1
{

1
4

(
6H L0 + 8ηxy�

x�y
)

× [
9H2ηxy LxL y + 48H�0Lx�

x

+ 64(�0)2ηxy�
x�y

]}1/3
.

(1.17)

Now, in order to find solutions of this model, we just need to 
find building blocks that satisfy Eqs. (1.2)–(1.6). In the next section 
we will just do this to find a solution that describes a black ring.

2. Non-Abelian black rings

2.1. Construction of the solution

Inspired by Refs. [11,8], we choose a point �x0 ≡ (
0,0,−R2/4

)
in E3 and a harmonic function N with a pole at that point,

N ≡ 1

|�x − �x0| ≡ 1

rn
, (2.1)

in terms of which we can write the non-vanishing building blocks 
in the ungauged directions as

H = 1

r
, M = 3

4 λiq
i (1 − |�x0|N

)
,

�i = − qi

4
√

2
N , Li = λi + Q i − Cijkq jqk

4
N . (2.2)

These functions contain the integration constants qi , Q i and λi . 
The first two can be interpreted as charges. The latter, whose value 
will be restricted by requirements such as the normalization of the 
metric at infinity, are moduli. Eq. (1.2) is satisfied automatically. 
Eq. (1.3) is satisfied with

χ = cos θdψ , (2.3)

where r, θ ∈ (0, π) and ψ ∈ [0, 2π) are spherical coordinates cen-
tered at r = |�x| = 0 with the definitions and orientation⎧⎨
⎩

x1 = r sin θ sinψ ,

x2 = r sin θ cosψ ,

x3 = −r cos θ ,

ε123 = εrθψ = +1 . (2.4)

Eqs. (1.4) are satisfied with

Ăi = − qi

4
√

2
cos θndψn , (2.5)

where rn, θn ∈ (0, π) and ψn ∈ [0, 2π) are spherical coordinates 
centered at rn = |�xn| = 0 with the definitions⎧⎨
⎩

x1
n ≡ x1 − x1

0 = rn sin θn sinψn ,

x2
n ≡ x2 − x2

0 = rn sin θn cosψn ,

x3
n ≡ x3 − x3

0 = −rn cos θn ,

(2.6)

and the same orientation as the spherical coordinates centered at 
r = 0.

Eqs. (1.5) in the Abelian directions are trivially satisfied because 
all f i j

k = 0 and, finally, the integrability condition of Eq. (1.6) is 
identically satisfied for the chosen integration constants and ω can 
be found by integration. We will compute ω for the complete so-
lution later.

The above functions are enough to construct an Abelian black 
ring. Now, we excite the gauged directions of this solution by 
adding to it a solution of the SU(2) Bogomol’nyi equations on E3

(1.4)



478 T. Ortín, P.F. Ramírez / Physics Letters B 760 (2016) 475–481
�α = 1

grn
(
1 + λ2rn

)δα
s+1

xs
n

rn
,

Ăα = 1

grn
(
1 + λ2rn

)εα
rs

xs
n

rn
dxr

n . (2.7)

This solution, originally found by Protogenov in Ref. [23], de-
scribes a magnetic colored monopole placed at rn = 0. It is singular 
at rn = 0 as a field configuration in E3, but this behavior can 
change when we analyze the whole picture. In fact, we showed 
in Ref. [28] that the monopole field gives rise to a BPST instan-
ton in E4 through (1.15), and we used this result in Ref. [30] to 
construct a regular black hole of the same supergravity theory we 
consider in this work.

In the present case we obtain a different instanton field config-
uration from (1.15), which we call distorted BPST, because the pole 
of the harmonic function H is placed in a different point (r = 0) 
than that of the colored monopole (rn = 0). This distorted BPST is 
singular at rn = 0, which might turn the black ring solution ill-
defined. Happily this is not the case. The complete vector field 
contains the instanton plus an additional term, see (1.14), where 
the latter cancels precisely this divergence at that critical point

lim
rn→∞

(
−√

3hI f̂ ω5 + 2
√

6H−1�I
)

(dz + χ) = 0 . (2.8)

Observe that in the ungauged case the �αs would have been 
harmonic functions −qα N/(4

√
2) and the combinations Cijkq jqk

should have been replaced by Ci J K q J qK . Here the asymptotic be-
havior of the non-Abelian gauge field indicates that the “non-
Abelian qαs” do not contribute in the same way the qis do. How-
ever, they have a similar near-horizon behavior.

The above functions define completely the solution. In what fol-
lows we are going to analyze its metric to show that it describes a 
regular black ring and to compute its main properties.

2.2. Analysis of the solution

In this analysis it is convenient to use two set of coordinates: 
those centered at r = 0 (r, θ, ψ , defined in Eq. (2.4)) supplemented 
by the time coordinate t and the angular coordinate ϕ , and those 
centered at rn = 0 (rn, θn, ψn , defined in Eq. (2.6)) supplemented 
by the time coordinate tn and the angular coordinate ϕn . The rela-
tions

rn = (
r2 + |�x0|2 − 2|�x0|r cos θ

)1/2
,

r = (
r2

n + |�x0|2 + 2|�x0|rn cos θn
)1/2

,

|�x0| = r cos θ − rn cos θn ,

(2.9)

will be useful in the computations.
The metric function f̂ can be obtained by substituting the func-

tions H, LI , �I in Eq. (1.9). At this moment we just want to impose 
the standard asymptotic normalization

lim
r→∞ f̂ = 1 , ⇒ 33C ijkλiλ jλk = 33

2
λ0λ

2
1 = 1 . (2.10)

Now let us compute the only missing ingredient in the metric 
(1.10): the 1-form ω̂. Let us consider Eq. (1.6), which, upon substi-
tution of the chosen functions H, M, LI , �I , can be written as

�3dω = − 3
4 λiqi

{
− 1

r2

[
1 − |�x0| + r

rn

+ r|�x0|(r+|�x0|)
r3

n
(1 − cos θ)

]
dr

+
[ |�x0| sin θ

r3

(
r − |�x0|

)]
dθ

}
,

(2.11)
n

and a solution can be readily found assuming ω has only one non-
vanishing component, ωψ

11:

ω = − 3
4 λiq

i (cos θ − 1)

[
1 −

(
r + R2

4

)
1

rn

]
dψ . (2.12)

Observe that, since Lα = 0 the non-Abelian terms do not affect 
ω. However, they do affect the whole 5-dimensional ω̂ given in 
Eq. (1.11) via ω5 in Eq. (1.12):

ω̂ = (F − G)dϕ + (F − G cos θ)dψ , (2.13)

F = 3λiqi

4

[
1 −

(
r + R2

4

)
1

rn

]
, (2.14)

G = qi

16

[
3
(

Q i − Cijkq jqk
)

+ 2Cijkq jqk r

rn

]
r

r2
n

− 2q0

g2

r2

r3
n
(
1 + λ2rn

)2
. (2.15)

The last term in G has a non-Abelian origin. In the r → ∞ limit 
in which the metric tends to Minkowski’s (so we have an asymp-
totically flat solution), though, it is subdominant and we do not 
expect it to contribute to the angular momentum of the solution.

So far we have been working in coordinates in which the hy-
perKähler metric Eq. (1.13) is of the form

dŝ2 = r (dϕ + cos θdψ)2

+ 1

r

[
dr2 + r2

(
dθ2 + sin θ2dψ2

)]
, (2.16)

but, in order to compute mass and angular momentum, it is conve-
nient to use a different coordinate system (also centered at �x = 0) 
t, �, φ1, φ2, related to the former by

r = ρ2

4
, θ = 2�, ψ = φ1 − φ2 , ϕ = φ1 + φ2 ,

(2.17)

in which the complete 5-dimensional metric is of the form

ds2 = f̂ 2 (
dt + ω̂

)2 − f̂ −1
[
dρ2

+ ρ2
(

d�2 + cos2 �dφ2
1 + sin2 �dφ2

2

)]
, (2.18)

with

ω̂ =
(

2F − 2G cos2 �
)

dφ1 − 2G sin2 �dφ2 . (2.19)

The independent components of the angular momentum are now 
obtained from the metric behavior in the ρ → ∞ limit12

Jφ1 = lim
ρ→∞

π |gtφ1 |ρ2

4G N cos2 �
= 1

2
√

3
qi

(
3Q i − Cijkq jqk

)
, (2.20)

Jφ2 = lim
ρ→∞

π |gtφ2 |ρ2

4G N sin2 �
= 1

2
√

3
qi

(
3Q i − Cijkq jqk + 6λi R2

)
,

(2.21)

and, from the absence of contribution proportional to g , we see 
that they coincide with those of the Abelian black ring, as we ex-
pected.

11 The expression coincides with that of [36] despite we have chosen �x0 to be on 
the negative x3 axis. This is because the coordinate θ has also a relative sign with 
respect to the used in that reference.
12 We use units in which G N = √

3π/4.
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Observe that these formulae allow us to identify

qiλi R2 = 1√
3
( Jφ2 − Jφ1) . (2.22)

Before we move to study the possible presence of an event 
horizon, let us point out that the solution does not contain any 
Dirac–Misner strings.13 Indeed, the gtφ1 (resp. gtφ2 ) metric com-
ponent vanishes when the coordinate φ1 (resp. φ2) is not well 
defined, which happens at � = π/2 (� = 0).

The solution may have an event horizon at �x = �x0, where the 
norm of the timelike Killing vector of the metric vanishes. In order 
to study the near horizon limit we need to use a different coor-
dinate system because several components of the metric blow up 
there in the coordinates we have been using so far. Recall the ex-
pression for the metric in the original frame centered at �x = 0

ds2 = f̂ 2 (dt + ω)2 + 2 f̂ 2ω5(dt + ω)(dϕ + cos θdψ)

− f̂ 2
(

f̂ −3r − ω2
5

)
(dϕ + cos θdψ)2 − f̂ −1r−1dxrdxr .

(2.23)

We first go to the auxiliary frame centered at the horizon with 
spherical coordinates and take the rn → 0 limit. The functions that 
appear in the metric behave in this limit as follows

f̂ = 16

R2 v2
r2

n +O(r3
n) , (2.24)

ωψn = − 3

R2
λiq

i sin2 θnrn +O(r2
n) (2.25)

f̂ −1r−1 = v2

4
r−2

n + k1r−1
n +O(rn) , (2.26)

f̂ 2ω5 = − 2

v
rn + k2r2

n +O(r3
n) , (2.27)

f̂ 2( f̂ −3r − ω2
5) = l2

4
+ k3rn +O(r2

n) , (2.28)

where we have defined the constants

v =
(

Cijkqiq jqk − 16
q0

g2

)1/3

, (2.29)

l = 1

2v2

[
9 · 62C ijkCklm

(
Q i − Cihnqhqn

)(
Q j − C jpqqpqq)qlqm

− 9
(

qi Q i − Cijkqiq jq j
)2 − 12qiλi R2 v3

− 9

(
Q 1 − q0q1

3

)2 (
32

g2

)]1/2

. (2.30)

These expression for the constants v and l resemble those of 
the Abelian case [11], with an additional non-Abelian term. The 
precise form of the constants k1, k2 and k3 in terms of the charges 
are messy. They do not occur in the calculation of any physical 
quantity, but they play a role in the near horizon analysis,14 since 

13 They could have been removed but only at the price of introducing closed time-
like curves [37].
14 We give their form here for the sake of completeness,

k1 =
16λ2 R2 q0

g2 + 3
(
qi Q i − Cijkqiq jqk

)
3R2 v

, (2.31)

k2 = 4k1

v
, (2.32)

k3 = 1
2 2 4

{
3R2k1

3

[
(q0q1/3)2

(
96 − 3g2(q1)2

)

2g R v v
they are responsible for the disappearance of O(r−1
n ) in the metric 

after we perform the following coordinate transformation,

dtn = dτn +
(

b2

r2
n

+ b1

rn

)
drn , dϕn = −dψn + 2dξn + c1

rn
drn ,

(2.34)

where the constants b1, b2 and c1 can be chosen such that all 
divergences in the metric in the rn → 0 limit disappear:

c1 = ∓ v

l
, b2 = ± lv2

8
, b1 = ±4l2k1 + l2 v3k2 + 4v2k3

16l
.

(2.35)

With this choice we find in the rn → 0 limit that the horizon 
has the following metric

ds2
h = −l2dξ2

n − v2

4

(
dθ2

n + sin2 θndψ2
n

)
, (2.36)

with the topology S1 × S2, so the solution is a black ring with 
non-Abelian hair, i.e. a non-Abelian black ring. Using this metric 
we can compute the area of the horizon,15

Ah

2π2
= 1

2π2

∫
d3x

√|gh| = lv2 , (2.37)

so the entropy of the non-Abelian black ring can be written in 
terms of the charges and angular momenta using the expressions 
for the constants v and l Eqs. (2.29) and (2.30) together with 
Eq. (2.22) as follows:

S = π

[
3 · 62C ijkCklm

(
Q i − Cihnqhqn

)(
Q j − C jpqqpqq)qlqm

− 3
(

qi Q i − Cijkqiq jqk
)2

− 4√
3
( Jφ2 − Jφ1)

(
Cijkqiq jqk − 16

q0

g2

)

− 3

(
Q 1 − q0q1

3

)2 (
32

g2

)]1/2

. (2.38)

+ 6(q0q1/3)
(
−32Q 1 + g2q1(−2(q1)2/6q0 + 2q0 Q 0 + q1 Q 1)

)
+ 3

(
4(q1)2/6g2q0q1 Q 1 + 32Q 2

1

+ g2
(
−q1 Q 1(4q0 Q 0 + q1 Q 1) + (Cijkqiq jqk − qi Q i)

2
))

+ 4λiq
i
(
−16q0 + g2Cijkqiq jqk

)
R2

]
− 3

[
9g2((q1)2/6 − Q 0)(q0q1/3 − Q 1)2

+
(
−24(q0q1/3)2λ2 + 6(q1)2/6g2λ1q0q1

− 6g2λ1q0 Q 0q1 + 96λ1 Q 1 − 6g2λ0q0q1 Q 1

− 3g2λ1(q1)2 Q 1 − 24λ2 Q 2
1

+ 3q0q1/3
(
−32λ1 + 2g2λ0q0q1 + g2λ1(q1)2 + 16λ2 Q 1

)

+ 32λiq
iq0 − 8Cijkqiq jqk g2λiq

i + 6g2λiq
i Q jq

j
)

R2 + 16λ2λiq
iq0 R4

]}
.

(2.33)

15 Notice that ξn ∈ [0, 2π), as can be deduced from expression (2.34) together with ∫
d�(3) = 2π2.
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Finally, we would like to compute the mass of the solution. 
We do so by comparing the asymptotic behavior of the met-
ric component gtt with that of the Schwarzschild solution, gtt ∼
1 − 8MG

3πρ2 + · · · . We get

M = 35/2λ1

2
(λ1 Q 0 + 2λ0 Q 1) . (2.39)

The constants λi can be expressed in terms of physical con-
stants. If we define the physical scalars of the theory as φx ≡ hx/h0
we find that the only scalar with a non-vanishing asymptotic value 
is the Abelian one and this value is φ1∞ = λ1/λ0. On the other 
hand, the asymptotic normalization of the metric Eq. (2.10) im-
plied λ0λ

2
1 = 2/33. Then,

λ0 = 21/33−1
(
φ1∞

)−2/3
, λ1 = 21/33−1

(
φ1∞

)1/3
, (2.40)

and M takes the form

M = 2−1/331/2
[(

φ1∞
)2/3

Q 0 + 2
(
φ1∞

)−1/3
Q 1

]
, (2.41)

and depends only on the moduli and on the electric charges Q 0 , 
Q 1 while the qi , which correspond to magnetic dipole momenta 
do not contribute to it [6]. The non-Abelian field do not contribute, 
either.

This expression looks identical to that of the non-Abelian black 
hole solution constructed in Ref. [30], but the charges Q 0 and Q 1
are not the same than the charges q0 and q1 that appear in the 
black-hole mass formula given in that reference. They are, actu-
ally, related by Q BR

i = qBH
i + Cijkq j

BRqk
BR. This is just reflecting the 

fact that the conserved electrical charges in the black ring receive 
contributions from the magnetic dipole momenta via the Chern–
Simons term in the action. This effect is commonly described as 
“charges dissolved in fluxes” [9].

This non-Abelian black-ring mass formula, is, however, identical 
to that of the Abelian black ring that one would obtain by remov-
ing the non-Abelian fields from this solution. In other words: the 
presence of non-Abelian fields is not observable at spatial infin-
ity. They do contribute to the entropy, though, as in the black-hole 
case, their entropy being smaller than that of their Abelian sib-
lings.

3. Non-Abelian rotating black holes

In the R → 0 limit, several things happen:

1. All the harmonic functions are now centered at r = 0 (except 
for M which becomes constant):

H = N = 1

r
, M = 3

4 λiq
i , �i = − qi

4
√

2
N ,

Li = λi + Q i − Cijkq jqk

4
H . (3.1)

2. The non-Abelian gauge field is also centered at r = 0:

�α = 1

gr
(
1 + λ2r

)δα
s+1

xs

r
, Ăα = 1

gr
(
1 + λ2r

)εα
rs

xs

r
dxr ,

(3.2)

and the distorted BPST instanton is not distorted anymore.
3. The metric function f̂ is now given by

f̂ −3 =
[

3
2

(
λ0 + Q 0

4r

)
− 2

g2

1

r(1 + λ2r)2

]

×
[

9

(
λ1 + Q 1

4r

)2

− 2(q0)2

g2

1

r2(1 + λ2r)2

]
. (3.3)

The mass of this object is identical to that of the black ring 
Eqs. (2.39) and (2.41). It has no non-Abelian contributions. The 
near-horizon limit, though, includes non-Abelian terms

f̂ −1 ∼ Y

r
, with Y 3 =

(
3
8 Q 0 − 2

g2

)(
9

16 Q 2
1 − 2

g2
(q0)2

)
(3.4)

4. ω vanishes identically and ω̂ is determined only by ω5, which 
takes the form

ω̂ = ω5(dϕ + cos θdψ) ,

ω5 = qi

16

(
3Q i − Cijkq jqk

) 1

r
− 2q0

g2

1

r
(
1 + λ2r

)2
.

(3.5)

As a result, the two angular momenta become identical

Jφ1 = Jφ2 = 1
2
√

3
qi

(
3Q i − Cijkq jqk

)
≡ J . (3.6)

Observe that the non-Abelian term in ω5, which does not 
contribute to the angular momentum, does contribute to the 
r → 0 limit just as the Abelian terms:

ω5 ∼ Z/r , where Z =
√

3
8 J − 2q0

g2
. (3.7)

Let us study the near-horizon limit → 0. Using Eqs. (3.4) and 
(3.7), we find that the metric Eq. (1.10) behaves in this limit as

ds2 ∼ r2

Y 2
dt2 − Y

r2
dr2 − Y d�2

(2) + 2Z

Y 2
rdt(dϕ + cos θdψ)

+
(

Z 2

Y 2
− Y

)
(dϕ + cos θdψ)2 , (3.8)

which can be rewritten in the form

ds2 ∼ Y d�2
(2) − Y d�2

(2) − Y [sinαρdt − cosα(dϕ + cos θdψ)]2 ,

(3.9)

where r = (Y 3 − Z 2)1/2ρ , d�2
(2) = ρ2dt2 − dρ2

ρ2 is the metric of 

the AdS2 of unit radius and sin2 α = Z 2/Y 3. This space is the 
near-horizon limit of the BMPV black hole [38], but, due to the 
non-Abelian contribution to Z (which can be understood as a sort 
of “near-horizon angular momentum”), now α does not vanish for 
vanishing asymptotic angular momentum J and we can have a 
stationary black hole with J = 0 whose near-horizon limit is not 
AdS2 × S3. The converse is also possible: we can make α = Z = 0
for J = 16√

3
q0/g2 and have a rotating black hole whose near-

horizon limit is AdS2 × S3.
The area of the horizon is

A

2π2
= 8

√
Y 3 − Z 2 . (3.10)
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4. Conclusions

The existence of black-hole and black-ring solutions with iden-
tical asymptotic behavior but with non-Abelian hair that con-
tributes to the entropy [21,25,24,30] challenges our understand-
ing of black-hole hair and the microscopic interpretation of the 
black-hole/black-ring entropy, just as the Abelian hair discov-
ered in Ref. [6] did. More research is necessary to gain a bet-
ter understanding of these solutions. In particular, the stability 
of these supersymmetric non-Abelian solutions (which are en-
tropically disfavored) needs to be addressed and their possible 
non-supersymmetric and non-extremal generalizations have to be 
constructed and studied. Work in these directions is in progress.
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