143 research outputs found
Temperature-Dependent Modeling of Thermoelectric Elements
Active thermal control is crucial in achieving the required accuracy and
throughput in many industrial applications, e.g., in the medical industry,
high-power lighting industry, and semiconductor industry. Thermoelectric
Modules (TEMs) can be used to both heat and cool, alleviating some of the
challenges associated with traditional electric heater based control. However,
the dynamic behavior of these modules is non-affine in their inputs and state,
complicating their implementation. To facilitate advanced control approaches a
high fidelity model is required. In this work an approach is presented that
increases the modeling accuracy by incorporating temperature dependent
parameters. Using an experimental identification procedure, the parameters are
estimated under different operating conditions. The resulting model achieves
superior accuracy for a wide range of temperatures, demonstrated using
experimental validation measurements.Comment: 6 pages, 21st IFAC World Congress 202
Exploring the drivers of variation in trophic mismatches:A systematic review of long-term avian studies
Many organisms reproduce in seasonal environments, where selection on timing of reproduction is particularly strong as consumers need to synchronize reproduction with the peaked occurrence of their food. When a consumer species changes its phenology at a slower rate than its resources, this may induce a trophic mismatch, that is, offspring growing up after the peak in food availability, potentially leading to reductions in growth and survival. However, there is large variation in the degree of trophic mismatches as well as in its effects on reproductive output. Here, we explore the potential causes for variation in the strength of trophic mismatches in published studies of birds. Specifically, we ask whether the changes in the degree of mismatch that have occurred over time can be explained by a bird's (a) breeding latitude, (b) migration distance, and/or (c) life-history traits. We found that none of these three factors explain changes in the degree of mismatch over time. Nevertheless, food phenology did advance faster at more northerly latitudes, while shifts in bird phenology did not show a trend with latitude. We argue that the lack of support in our results is attributable to the large variation in the metrics used to describe timing of food availability. We propose a pathway to improve the quantification of trophic mismatches, guided by a more rigorous understanding of links between consumers and their resources
Editorial : Supporting sustainable behavior change and empowerment in ubiquitous and learning health systems
Non peer reviewe
Lower Broadly Neutralizing Antibody Responses in Female Versus Male HIV-1 Infected Injecting Drug Users.
Understanding the factors involved in the development of broadly neutralizing antibody (bNAb) responses in natural infection can guide vaccine design aimed at eliciting protective bNAb responses. Most of the studies to identify and study the development of bNAb responses have been performed in individuals who had become infected via homo- or heterosexual HIV-1 transmission; however, the prevalence and characteristics of bNAb responses in injecting drug users (IDUs) have been underrepresented. We retrospectively studied the prevalence of bNAb responses in HIV-1 infected individuals in the Amsterdam Cohort, including 50 male and 35 female participants who reported injecting drug use as the only risk factor. Our study revealed a significantly lower prevalence of bNAb responses in females compared to males. Gender, transmission route and CD4+ count at set point, but not viral load, were independently associated with the development of bNAb responses in IDUs. To further explore the influences of gender in the setting of IDU, we also looked into the Swiss 4.5k Screen. There we observed lower bNAb responses in female IDUs as well. These results reveal that the emergence of bNAbs may be dependent on multiple factors, including gender. Therefore, the effect of gender on the development of bNAb responses is a factor that should be taken into account when designing vaccine efficacy trials
Hampered Foraging and Migratory Performance in Swans Infected with Low-Pathogenic Avian Influenza A Virus
It is increasingly acknowledged that migratory birds, notably waterfowl, play a critical role in the maintenance and spread of influenza A viruses. In order to elucidate the epidemiology of influenza A viruses in their natural hosts, a better understanding of the pathological effects in these hosts is required. Here we report on the feeding and migratory performance of wild migratory Bewick's swans (Cygnus columbianus bewickii Yarrell) naturally infected with low-pathogenic avian influenza (LPAI) A viruses of subtypes H6N2 and H6N8. Using information on geolocation data collected from Global Positioning Systems fitted to neck-collars, we show that infected swans experienced delayed migration, leaving their wintering site more than a month after uninfected animals. This was correlated with infected birds travelling shorter distances and fuelling and feeding at reduced rates. The data suggest that LPAI virus infections in wild migratory birds may have higher clinical and ecological impacts than previously recognised
The ethics of ‘Trials within Cohorts’ (TwiCs): 2nd international symposium - London, UK. 7-8 November 2016
On 7-8
th
November 2016, 60 people with an interest in the
‘
Trials
within Cohorts
’
(TwiCs) approach for randomised controlled trial design
met in London. The purpose of this 2
nd
TwiCs international symposium
was to share perspectives and experiences on ethical aspects of the
TwiCs design, discuss how TwiCs relate to the current ethical frame-
work, provide a forum in which to discuss and debate ethical issues
and identify future directions for conceptual and empirical research.
The symposium was supported by the Wellcome Trust and the NIHR
CLAHRC Yorkshire and Humber and organised by members of the
TwiCs network led by Clare Relton and attended by people from the
UK, the Netherlands, Norway, Canada and USA. The two-day sympo-
sium enabled an international group to meet and share experiences
of the TwiCs design (also known as the
‘
cohort multiple RCT design
’
),
and to discuss plans for future research. Over the two days, invited
plenary talks were interspersed by discussions, posters and mini pre-
sentations from bioethicists, triallists and health research regulators.
Key findings of the symposium were: (1) It is possible to make a
compelling case to ethics committees that TwiCs designs are ap-
propriate and ethical; (2) The importance of wider considerations
around the ethics of inefficient trial designs; and (3) some questions
about the ethical requirements for content and timing of informed
consent for a study using the TwiCs design need to be decided on
a case-by-case basis
Co-display of diverse spike proteins on nanoparticles broadens sarbecovirus neutralizing antibody responses
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants poses continuous challenges in combating the virus. Here, we describe vaccination strategies to broaden SARS-CoV-2 and sarbecovirus immunity by combining spike proteins based on different viruses or viral strains displayed on two-component protein nanoparticles. First, we combined spike proteins based on ancestral and Beta SARS-CoV-2 strains to broaden SARS-CoV-2 immune responses. Inclusion of Beta spike improved neutralizing antibody responses against SARS-CoV-2 Beta, Gamma, and Omicron BA.1 and BA.4/5. A third vaccination with ancestral SARS-CoV-2 spike also improved cross-neutralizing antibody responses against SARS-CoV-2 variants, in particular against the Omicron sublineages. Second, we combined SARS-CoV and SARS-CoV-2 spike proteins to broaden sarbecovirus immune responses. Adding SARS-CoV spike to a SARS-CoV-2 spike vaccine improved neutralizing responses against SARS-CoV and SARS-like bat sarbecoviruses SHC014 and WIV1. These results should inform the development of broadly active SARS-CoV-2 and pan-sarbecovirus vaccines and highlight the versatility of two-component nanoparticles for displaying diverse antigens
Plasma lipid profiles discriminate bacterial from viral infection in febrile children
Fever is the most common reason that children present to Emergency Departments. Clinical signs and symptoms suggestive of bacterial infection are often non-specific, and there is no definitive test for the accurate diagnosis of infection. The 'omics' approaches to identifying biomarkers from the host-response to bacterial infection are promising. In this study, lipidomic analysis was carried out with plasma samples obtained from febrile children with confirmed bacterial infection (n = 20) and confirmed viral infection (n = 20). We show for the first time that bacterial and viral infection produces distinct profile in the host lipidome. Some species of glycerophosphoinositol, sphingomyelin, lysophosphatidylcholine and cholesterol sulfate were higher in the confirmed virus infected group, while some species of fatty acids, glycerophosphocholine, glycerophosphoserine, lactosylceramide and bilirubin were lower in the confirmed virus infected group when compared with confirmed bacterial infected group. A combination of three lipids achieved an area under the receiver operating characteristic (ROC) curve of 0.911 (95% CI 0.81 to 0.98). This pilot study demonstrates the potential of metabolic biomarkers to assist clinicians in distinguishing bacterial from viral infection in febrile children, to facilitate effective clinical management and to the limit inappropriate use of antibiotics
Two-component spike nanoparticle vaccine protects macaques from SARS-CoV-2 infection
Brouwer et al. present preclinical evidence in support of a COVID-19 vaccine candidate, designed as a self-assembling two-component protein nanoparticle displaying multiple copies of the SARS-CoV-2 spike protein, which induces strong neutralizing antibody responses and protects from high-dose SARS-CoV-2 challenge.The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic is continuing to disrupt personal lives, global healthcare systems, and economies. Hence, there is an urgent need for a vaccine that prevents viral infection, transmission, and disease. Here, we present a two-component protein-based nanoparticle vaccine that displays multiple copies of the SARS-CoV-2 spike protein. Immunization studies show that this vaccine induces potent neutralizing antibody responses in mice, rabbits, and cynomolgus macaques. The vaccine-induced immunity protects macaques against a high-dose challenge, resulting in strongly reduced viral infection and replication i
- …