48 research outputs found

    Acute cellular and vascular responses to photodynamic therapy using EGFR-targeted nanobody-photosensitizer conjugates studied with intravital optical imaging and magnetic resonance imaging

    Get PDF
    Targeted photodynamic therapy (PDT) has the potential to selectively damage tumor tissue and to increase tumor vessel permeability. Here we characterize the tissue biodistribution of two EGFR-targeted nanobody-photosensitizer conjugates (NB-PS), the monovalent 7D12-PS and the biparatopic 7D12-9G8-PS. In addition, we report on the local and acute phototoxic effects triggered by illumination of these NB-PS which have previously shown to lead to extensive tumor damage. Methods: Intravital microscopy and the skin-fold chamber model, containing OSC-19-luc2-cGFP tumors, were used to investigate: a) the fluorescence kinetics and distribution, b) the vascular response and c) the induction of necrosis after illumination at 1 or 24 h post administration of 7D12-PS and 7D12-9G8-PS. In addition, dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) of a solid tumor model was used to investigate the microvascular status 2 h after 7D12-PS mediated PDT. Results: Image analysis showed significant tumor colocalization for both NB-PS which was higher for 7D12-9G8-PS. Intravital imaging showed clear tumor cell membrane localization 1 and 2 h after administration of 7D12-9G8-PS, and fluorescence in or close to endothelial cells in normal tissue for both NB-PS. PDT lead to vasoconstriction and leakage of tumor and normal tissue vessels in the skin-fold chamber model. DCE-MRI confirmed the reduction of tumor perfusion after 7D12-PS mediated PDT. PDT induced extensive tumor necrosis and moderate normal tissue damage, which was similar for both NB-PS conjugates. This was significantly reduced when illumination was performed at 24 h com

    Erratum: Acute cellular and vascular responses to photodynamic therapy using EGFR-targeted nanobody-photosensitizer conjugates studied with intravital optical imaging and magnetic resonance imaging: Erratum

    Get PDF
    The authors regret to find an error in the published version of figure 1B, where the graph for 7D12-PS mistakenly was miscopied for 7D12-9G8-PS. During the review process a correct version of Figure 1B was included. The mistake was made while preparing the final text and figures in response to reviewers comments. The authors have revised Figure 1B, and confirm that the correction has no effect on the original data and conclusions. The authors apologize for any inconvenience that the errors may have caused

    Acute cellular and vascular responses to photodynamic therapy using EGFR-targeted nanobody-photosensitizer conjugates studied with intravital optical imaging and magnetic resonance imaging: Erratum

    Get PDF
    Acute cellular and vascular responses to photodynamic therapy using EGFR-targeted nanobody-photosensitizer conjugates studied with intravital optical imaging and magnetic resonance imaging (Theranostics (2020) 10:5 (2436-2452) DOI: 10.7150/thno.37949

    Neoadjuvant chemoradiotherapy plus surgery versus active surveillance for oesophageal cancer: A stepped-wedge cluster randomised trial

    Get PDF
    Background: Neoadjuvant chemoradiotherapy (nCRT) plus surgery is a standard treatment for locally advanced oesophageal cancer. With this treatment, 29% of patients have a pathologically complete response in the resection specimen. This provides the rationale for investigating an active surveillance approach. The aim of this study is to assess the (cost-)effectiveness of active surveillance vs. standard oesophagectomy after nCRT for oesophageal cancer. Methods: This is a phase-III multi-centre, stepped-wedge cluster randomised controlled trial. A total of 300 patients with clinically complete response (cCR, i.e. no local or disseminated disease proven by histology) after nCRT will be randomised to show non-inferiority of active surveillance to standard oesophagectomy (non-inferiority margin 15%, intra-correlation coefficient 0.02, power 80%, 2-sided α 0.05, 12% drop-out). Patients will undergo a first clinical response evaluation (CRE-I) 4-6 weeks after nCRT, consisting of endoscopy with bite-on-bite biopsies of the primary tumour site and other suspected lesions. Clinically complete responders will undergo a second CRE (CRE-II), 6-8 weeks after CRE-I. CRE-II will include 18F-FDG-PET-CT, followed by endoscopy with bite-on-bite biopsies and ultra-endosonography plus fine needle aspiration of suspected lymph nodes and/or PET- positive lesions. Patients with cCR at CRE-II will be assigned to oesophagectomy (first phase) or active surveillance (second phase of the study). The duration of the first phase is determined randomly over the 12 centres, i.e., stepped-wedge cluster design. Patients in the active surveillance arm will undergo diagnostic evaluations similar to CRE-II at 6/9/12/16/20/24/30/36/48 and 60 months after nCRT. In this arm, oesophagectomy will be offered only to patients in whom locoregional regrowth is highly suspected or proven, without distant dissemination. The main study parameter is overall survival; secondary endpoints include percentage of patients who do not undergo surgery, quality of life, clinical irresectability (cT4b) rate, radical resection rate, postoperative complications, progression-free survival, distant dissemination rate, and cost-effectiveness. We hypothesise that active surveillance leads to non-inferior survival, improved quality of life and a reduction in costs, compared to standard oesophagectomy. Discussion: If active surveillance and surgery as needed after nCRT leads to non-inferior survival compared to standard oesophagectomy, this organ-sparing approach can be implemented as a standard of care

    Global patient outcomes after elective surgery: prospective cohort study in 27 low-, middle- and high-income countries.

    Get PDF
    BACKGROUND: As global initiatives increase patient access to surgical treatments, there remains a need to understand the adverse effects of surgery and define appropriate levels of perioperative care. METHODS: We designed a prospective international 7-day cohort study of outcomes following elective adult inpatient surgery in 27 countries. The primary outcome was in-hospital complications. Secondary outcomes were death following a complication (failure to rescue) and death in hospital. Process measures were admission to critical care immediately after surgery or to treat a complication and duration of hospital stay. A single definition of critical care was used for all countries. RESULTS: A total of 474 hospitals in 19 high-, 7 middle- and 1 low-income country were included in the primary analysis. Data included 44 814 patients with a median hospital stay of 4 (range 2-7) days. A total of 7508 patients (16.8%) developed one or more postoperative complication and 207 died (0.5%). The overall mortality among patients who developed complications was 2.8%. Mortality following complications ranged from 2.4% for pulmonary embolism to 43.9% for cardiac arrest. A total of 4360 (9.7%) patients were admitted to a critical care unit as routine immediately after surgery, of whom 2198 (50.4%) developed a complication, with 105 (2.4%) deaths. A total of 1233 patients (16.4%) were admitted to a critical care unit to treat complications, with 119 (9.7%) deaths. Despite lower baseline risk, outcomes were similar in low- and middle-income compared with high-income countries. CONCLUSIONS: Poor patient outcomes are common after inpatient surgery. Global initiatives to increase access to surgical treatments should also address the need for safe perioperative care. STUDY REGISTRATION: ISRCTN5181700

    A MRI-compatible combined mechanical loading and mr elastography setup to study deformation-induced skeletal muscle damage in rats

    Get PDF
    Deformation of skeletal muscle in the proximity of bony structures may lead to deep tissue injury category of pressure ulcers. Changes in mechanical properties have been proposed as a risk factor in the development of deep tissue injury and may be useful as a diagnostic tool for early detection. MRE allows for the estimation of mechanical properties of soft tissue through analysis of shear wave data. The shear waves originate from vibrations induced by an external actuator placed on the tissue surface. In this study a combined Magnetic Resonance (MR) compatible indentation and MR Elastography (MRE) setup is presented to study mechanical properties associated with deep tissue injury in rats. The proposed setup allows for MRE investigations combined with damage-inducing large strain indentation of the Tibialis Anterior muscle in the rat hind leg inside a small animal MR scanner. An alginate cast allowed proper fixation of the animal leg with anatomical perfect fit, provided boundary condition information for FEA and provided good susceptibility matching. MR Elastography data could be recorded for the Tibialis Anterior muscle prior to, during, and after indentation. A decaying shear wave with an average amplitude of approximately 2 μm propagated in the whole muscle. MRE elastograms representing local tissue shear storage modulus Gd showed significant increased mean values due to damage-inducing indentation (from 4.2 ± 0.1 kPa before to 5.1 ± 0.6 kPa after,

    Noninvasive fluence rate mapping in living tissues using magnetic resonance thermometry

    No full text
    A noninvasive method is introduced for quantification and visualization of fluence rate in light-irradiated biological tissues. The method is based on magnetic resonance thermometry (MRT) measurements of tissue temperature changes resulting from absorption of light. From the spatial-temporal temperature data, the generated heat is calculated. Finally, fluence rate maps are reconstructed by dividing the heat data by the tissue absorption coefficient. Simulations were performed using virtual MRT datasets based on analytically described fluence rate distributions, which could be accurately reconstructed by the method. Next, the approach was tested in gel phantoms. Resulting fluence rate maps matched well with theoretical predictions in a nonscattering phantom (R-2 = 0.93). Experimental validation was further obtained in a scattering phantom, by comparing fluence rates to invasive fluence rate probe measurements along and perpendicular to the optical axis (R-2 >= 0.71 for both cases). Finally, our technique was applied in vivo in a mouse tumor model. The resulting fluence rates matched invasive probe measurements (Pearson's. rho = 0.90, p = 0.0026). The method may be applied to investigate the relation between light dose and biological response in light-based treatments, such as photodynamic therapy. It may also be useful for experimental validation of light transport models. (C) 2017 Society of Photo-Optical Instrumentation Engineers (SPIE

    Average tumor values of DCE-MRI derived parameters at different time points before and after PDT, for treated and non-treated animals.

    No full text
    <p>Based on independent <i>t</i>-tests, average non-enhanced tumor fractions were significantly different between treated and non-treated animals right after, and 24 and 72 h after PDT (all: <i>p</i> < 0.0005). For all time points after PDT, the repeated measurements difference of treated animals compared to before PDT was significant (all: <i>p</i> < 0.0005), while this was not the case for controls. Directly after PDT, the average tumor K<sup>trans</sup> decreased and v<sub>e</sub> increased significantly compared to baseline based on repeated measures (both: <i>p</i> < 0.0001), and also compared to untreated animals at the same time point (<i>p</i> < 0.0001 and <i>p</i> = 0.038, respectively).</p

    Representative examples of maps of endogenous MR parameters of two mice.

    No full text
    <p>First, second, and third columns show measurements of a single mouse obtained before, right after, and 24 h after PDT, respectively. The other three columns contain data acquired before, right after, and at 72 h post PDT of another mouse. The upper row contains T<sub>2</sub>-weighted anatomical reference images, which were used for tumor segmentation, indicated by the red contours. Rows 2 to 4 show R<sub>1</sub> maps, R<sub>2</sub> maps, and ADC maps, respectively. The color bar corresponds to the range of values indicated on the left.</p

    Mean tumor volume of control animals and PDT-treated mice at all time points, calculated by integrating the volumes of all pixels within manually drawn tumor ROIs.

    No full text
    <p>At 72 h after PDT, the average volume of treated tumors was significantly different than untreated ones (independent <i>t</i>-test, <i>p</i> = 0.038). Tumors of treated mice at 72 h after PDT were also significantly smaller than right after PDT (paired <i>t</i>-test, <i>p</i> = 0.010).</p
    corecore