25 research outputs found

    Impact of Polychlorinated Biphenyls Contamination on Estrogenic Activity in Human Male Serum

    Get PDF
    Polychlorinated biphenyls (PCBs) are thought to cause numerous adverse health effects, but their impact on estrogen signaling is still not fully understood. In the present study, we used the ER-CALUX bioassay to determine estrogenic/antiestrogenic activities of the prevalent PCB congeners and PCB mixtures isolated from human male serum. The samples were collected from residents of an area with an extensive environmental contamination from a former PCB production site as well as from a neighboring background region in eastern Slovakia. We found that the lower-chlorinated PCBs were estrogenic, whereas the prevalent higher-chlorinated PCB congeners 138, 153, 170, 180, 187, 194, 199, and 203, as well as major PCB metabolites, behaved as anti-estrogens. Coplanar PCBs had no direct effect on estrogen receptor (ER) activation in this in vitro model. In human male serum samples, high levels of PCBs were associated with a decreased ER-mediated activity and an increased dioxin-like activity, as determined by the DR-CALUX assay. 17β-Estradiol (E(2)) was responsible for a major part of estrogenic activity identified in total serum extracts. Significant negative correlations were found between dioxin-like activity, as well as mRNA levels of cytochromes P450 1A1 and 1B1 in lymphocytes, and total estrogenic activity. For sample fractions containing only persistent organic pollutants (POPs), the increased frequency of anti-estrogenic samples was associated with a higher sum of PCBs. This suggests that the prevalent non-dioxin-like PCBs were responsible for the weak antiestrogenic activity of some POPs fractions. Our data also suggest that it might be important to pay attention to direct effects of PCBs on steroid hormone levels in heavily exposed subjects

    Prenatal and Postnatal Serum PCB Concentrations and Cochlear Function in Children at 45 Months of Age

    Get PDF
    Background: Some experimental and human data suggest that exposure to polychlorinated biphenyls (PCBs) may induce ototoxicity, though results of previous epidemiologic studies are mixed and generally focus on either prenatal or postnatal PCB concentrations exclusively. Objectives: Our aim was to evaluate the association between pre- and postnatal PCB concentrations in relation to cochlear status, assessed by distortion product otoacoustic emissions (DPOAEs), and to further clarify the critical periods in development where cochlear status may be most susceptible to PCBs. Methods: A total of 351 children from a birth cohort in eastern Slovakia underwent otoacoustic testing at 45 months of age. Maternal pregnancy, cord, and child 6-, 16-, and 45-month blood samples were collected and analyzed for PCB concentrations. At 45 months of age, DPOAEs were assessed at 11 frequencies in both ears. Multivariate, generalized linear models were used to estimate the associations between PCB concentrations at different ages and DPOAEs, adjusting for potential confounders. Results: Maternal and cord PCB-153 concentrations were not associated with DPOAEs at 45 months. Higher postnatal PCB concentrations at 6-, 16-, and 45-months of age were associated with lower (poorer) DPOAE amplitudes. When all postnatal PCB exposures were considered as an area-under-the-curve metric, an increase in PCB-153 concentration from the 25th to the 75th percentile was associated with a 1.6-dB SPL (sound pressure level) decrease in DPOAE amplitude (95% CI: –2.6, –0.5; p = 0.003). Conclusions: In this study, postnatal rather than maternal or cord PCB concentrations were associated with poorer performance on otoacoustic tests at age 45 months. Citation: Jusko TA, Sisto R, Iosif AM, Moleti A, Wimmerová S, Lancz K, Tihányi J, Šovčíková E, Drobná B, Palkovičová L, Jurečková D, Thevenet-Morrison K, Verner MA, Sonneborn D, Hertz-Picciotto I, Trnovec T. 2014. Prenatal and postnatal serum PCB concentrations and cochlear function in children at 45 months of age. Environ Health Perspect 122:1246–1252; http://dx.doi.org/10.1289/ehp.130747

    European birth cohorts for environmental health research

    Get PDF
    Many pregnancy and birth cohort studies investigate the health effects of early-life environmental contaminant exposure. An overview of existing studies and their data is needed to improve collaboration, harmonization, and future project planning

    The Joint Effect of Perceived Psychosocial Stress and Phthalate Exposure on Hormonal Concentrations during the Early Stage of Pregnancy: A Cross-Sectional Study

    No full text
    Phthalates alter the hormonal balance in humans during pregnancy, potentially affecting embryonic and fetal development. We studied the joint effect of exposure to phthalates, quantified by urinary phthalate metabolite concentration, and perceived psychological stress on the concentration of hormones in pregnant women (n = 90) from the Nitra region, Slovakia, up to the 15th week of pregnancy. We used high-performance liquid chromatography, tandem mass spectrometry (HPLC-MS/MS), and electro-chemiluminescence immunoassay to determine urinary concentrations of phthalates and serum concentrations of hormones, respectively. We used Cohen perceived stress scale (PSS) to evaluate the human perception of stressful situations. Our results showed that mono(carboxy-methyl-heptyl) phthalate (cx-MiNP) and a molar sum of di-iso-nonyl phthalate metabolites (ΣDiNP) were negatively associated with luteinizing hormone (LH) (p ≤ 0.05). Mono(hydroxy-methyl-octyl) phthalate (OH-MiNP) and the molar sum of high-molecular-weight phthalate metabolites (ΣHMWP) were positively associated with estradiol (p ≤ 0.05). PSS score was not significantly associated with hormonal concentrations. When the interaction effects of PSS score and monoethyl phthalate (MEP), cx-MiNP, ΣDiNP, and ΣHMWP on LH were analyzed, the associations were positive (p ≤ 0.05). Our cross-sectional study highlights that joint psychosocial stress and xenobiotic-induced stress caused by phthalates are associated with modulated concentrations of reproductive hormones in pregnant women

    Risk of Abdominal Obesity Associated with Phthalate Exposure of Nurses

    No full text
    Background: Occupational health hazards associated with phthalate exposure among nurses are still not well understood. Methods: We used high-performance liquid chromatography and tandem mass spectrometry to analyze phthalates. Anthropometric measurements and questionnaires were conducted. Results: We observed associations between mono-benzyl phthalate (MBzP) and body mass index (BMI), hip circumference (HC), waist circumference (WC), waist to height ratio (WHtR), and fat mass index (FMI), visceral fat content, BMI risk and hip index risk (HIrisk), adjusted to consumer behavior and consumer practices (r = 0.36–0.61; p ≤ 0.046). In the same model, we detected an association between mono-n-butyl phthalate (MnBP) and waist to hip ratio (WHR; r = 0.36; p = 0.046), mono-carboxy-isononyl phthalate (cx-MiNP) and BMI (r = 0.37; p = 0.043), HC (r = 0.4; p = 0.026) and WHtR (r = 0.38; p = 0.037), between mono-oxo-isononyl phthalate oxo (MiNP) and HC (r = 0.36; p = 0.045), mono-2-ethylhexyl phthalate (MEHP), mono(2-ethyl-5-oxohexyl) phthalate (oxo-MEHP) and HIrisk (r = 0.38–0.41; p ≤ 0.036), between oxo-MEHP and Anthropometric Risk Index (ARI risk; r = 0.4; p = 0.028). We detected a relationship between BMI and MBzP (β = 0.655; p p = 0.003), between hip circumference and MBzP (β = 0.486; p p = 0.001), and sum of secondary metabolites of diisononyl phthalate (∑DiNP; β = 0.307; p = 0.016). We observed a relationship between fat content and MBzP (β = 0.302; p = 0.033), OH-MnBP (β = −0.736; p = 0.006) and MiBP (β = 0.547; p = 0.046), visceral fat content and MBzP (β = 0.307; p = 0.030), HI-risk and MBzP (β = 0.444; p = 0.001), ARI-risk and sum of di-n-butyl phthalate metabolites (∑DnBP; β = 0.337; p = 0.018). We observed an association between the use of protective equipment with cx-MiNP. Conclusions: Occupational exposure to phthalates may induce abdominal obesity and result in obesity-related metabolic disorders

    Multiple adverse thyroid and metabolic health signs in the population from the area heavily polluted by organochlorine cocktail (PCB, DDE, HCB, dioxin)

    No full text
    Abstract Background Several our previous studies showed associations of increasing blood level of persistent organochlorinated pollutants (POPs) with individual thyroid and metabolic adverse health signs in subjects from heavily polluted area (POLL) compared to these from the area of background pollution (BCGR). In this study we present increasing number of subjects with multiple adverse signs positively associated with blood level of polychlorinated biphenyls (PCBs) which is used as a marker of other POPs cocktail. Methods In a total of 2046 adults (834 males and 1212 females; age range 21–75) from POLL and BCGR the serum level of major POPs such as of 15 most abundant PCBs congeners, dichlorodiphenyl-dichloroethylene (p,p'-DDE) and hexachlorobenzene (HCB) was estimated by high resolution gas chromatography. In addition, the data on thyroid volume by ultrasound and body mass index were obtained and serum level of thyroperoxidase and thyrotropin receptor antibodies as well as that of free thyroxine, total triiodothyronine, thyrotropin, thyroglobulin, fasting glucose and insulin, cholesterol and triglycerides was measured. Thus, a total of 13 adverse signs were defined and the interrelations between PCBs level and increasing number of subjects with increasing number of adverse signs were evaluated. Results Because of high correlation between major POPs (PCB, DDE and HCB), for this purpose the level of PCBs was considered as a marker also for the presence of DDE and HCB. Thus, if all data obtained from 2046 subjects were stratified according to quintiles of PCBs level, highly significant increase was found (p Conclusion Significantly higher accumulation of adverse signs in subjects with high POPs level was found in POLL thus supporting the conclusion that POPs appear to increase the prevalence of several subclinical and overt thyroid and metabolic disorders.</p

    Ratio of cord to maternal serum PCB concentrations in relation to their congener-specific physicochemical properties

    No full text
    The aim was to characterize placental transfer of some congeners of polychlorinated biphenyls (PCBs) and to relate human in utero exposure to these pollutants to their physicochemical properties. We included into the study 1134 births during the period 2002-2003 from two highly PCB contaminated districts in eastern Slovakia. Concentrations of 15 PCB congeners (IUPAC No. 28, 52, 101, 123(+149), 118, 114, 153, 105, 138(+163), 167, 156(+171), 157, 180, 170, and 189) in umbilical cord (C) and maternal serum (M) were determined. The C/M ratios were significantly related, either positively or inversely depending on parameter, to the logarithm of partition coefficient octanol-water (KOW), to fusion enthalpy at the melting point, molecular weight, water solubility, total surface area of the molecule, solvent accessible surface area, melting point, molar volume, and molecular electronegativity distance vector. We found an inverse association between logKOW and lipid adjusted logC/M (const=1.078, b1=-0.179, p&lt;0.001, R(2)=0.039). Parameters evaluated were interrelated except fusion enthalpy at the melting point and electron affinity vs. solubility. We discuss the possible role of cholesterol as a transplacental transporter of PCBs

    Duration of breastfeeding and serum PCB 153 concentrations in children

    No full text
    Polychlorinated biphenyls (PCBs) are toxic, persistent, and bioaccumulative chemicals which, because of their lipophilic properties, are abundant in human breast milk. Breastfed infants are therefore at risk of being exposed to considerable amounts of PCBs. The commonly used exposure estimations, based solely on breast milk PCB levels and duration of breastfeeding, may lead to exposure misclassification. To improve assessments of exposure to PCBs, we determined PCB 153 serum concentration, as a model substance for PCBs, at the critical time of weaning for each child in 305 breastfed infants from 5 single time point concentration measurements spread over 7 years and data on duration of breastfeeding, using an earlier developed model of the system type. We approximated the dependence of PCB 153 serum concentration, Ctbf, adjusted to cord serum concentration, C0, on nursing period, by a polynomial function Ctbf/C0=0.596+0.278t-0.0047t(2) which reliably predicts exposure to PCB 153 of breastfed infants, important for assessment of dose-outcome relationships. Adjustment of current serum concentrations to cord serum concentration improved validity of exposure assessment
    corecore